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Abstract. We present an approach for generating vectorial represen-
tations of graphs for machine learning applications based on a sensoric
response principle and multiple graph kernels. The sensor perspective re-
duces the graph kernel computations significantly. Thus, multiple kernel
(relevance) learning can be realized using the interpretable generalized ma-
trix learning vector quantization (GMLVQ) classifier. Results obtained in
small molecule classification serve as proof of concept.

1 Introduction

Data comparison forms the backbone of machine learning and its applications
in chem- and bioinformatics. Both fields require the handling (and thus the
comparison) of structured data in the form of graphs, e.g. structural formu-
las or proteins. Frequently, graph-derived feature vectors, so-called topological
descriptors [1] are compared. Instead, a direct processing of structures can be
achieved by use of graph kernels [2], where a respective feature map is only
considered implicitly.

The particular choice for one or another topological descriptor or graph ker-
nel comes with a feature bias, i.e., narrowing the model’s view to certain graph
properties while disregarding others. This necessitates either great computa-
tional effort during model selection or strategies like multiple kernel learning [3]
for combining different kernel matrices in a single learning procedure. As pow-
erful as kernels can be, they generally limit the choice of the classifier to Support
Vector Machines (SVMs) [4] or models designed to handle proximity data such
as median and relational variants of Learning Vector Quantization (LVQ) [5].

Here, we present an approach inspired by [6, 7] that maps graph data to a
proximity space by a sensoric response principle (SRP) [8, 9] based on different
graph comparison strategies allowing for relevance learning of these by General-
ized Matrix LVQ (GMLVQ) as a prominent interpretable classifier model [10, 11].
This SRP, significantly reduces the number of kernel computations and, hence,
makes this method practicable also for huge data sets.

2 Background

The following two subsections provide primers on kernels for structured data
and instances of interpretable machine learning models for relevance learning.
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Yet, instead of graph kernels, any other topological descriptors can be used in
the SRP-approach explained later.

2.1 Graph comparison by kernels

Let G be a non-empty set of data points and k : G xG — R be a function. Then &
is a kernel on G if there is a Hilbert space H, and a feature map ¢ : G — Hj such
that k(z,y) = (¢(z), #(y)) for z,y € G, where (-, -) denotes the inner product of
Hp.. Such a feature map exists iff the function « is psd and symmetric.

Kernels on structured data such as graphs are usually instances of so-called
convolution kernels [12]. The concept bases on substructure decomposition,
such that a graph kernel results from evaluating combinations of base ker-
nel functions defined on parts. The validity of this approach follows directly
from the closure properties of positive definite functions. Obviously, kernels
may be designed by choosing H and ¢, and simply evaluating (¢(z), d(y))-
This, however, requires operations in A, which might be computationally de-
manding such that efficient calculations of k(z,y) are aspired instead (kernel
trick). Every real kernel determines a distance between structures x and y by

d,@(l‘,y) = \/H(Z‘,JJ) - 2”('% y) + H(ya y)'

2.2 Classification by Learning Vector Quantization

Generalized Learning Vector Quantization (GLVQ) as introduced by [13] sup-
poses data vectors € X = {x; }Ilfll C R™ with class labels ¢(x) € C =
{1,...,C} for training. Further, trainable prototype vectors w € W =
{w; }\sz\fll C R™ with class labels c(w;) € C are required such that each class
of C is represented by at least one prototype. GLVQ aims at distributing
the prototype vectors such that the class label of any new input x can be
inferred by means of the nearest prototype principle given by c(wg(g)) where
s(x) = argmin; d(z, w;). This is realized by minimization of the cost function

B d(z,w") —d(z,w™)
£=2 f<d(g;,w+) +d(gc,w—)> M

reX

by stochastic gradient descent learning with respect to W, where f is a mono-
tonically increasing function, d is a dissimilarity measure in R” and w™ and w~
denote the closest prototypes to & with a matching label, i.e. c¢(x) = c(w™),
and non-matching label, i.e. ¢(x) # c(w™), respectively.

When d is set to be the (squared) Euclidean distance, as frequently done,
all input dimensions are weighted equally. To overcome this drawback, in [14]
the distance measure is adapted along with the prototypes, yielding a relevance
profile of the respective vector space dimensions. The Generalized Matrix LVQ
(GMLVQ) by [10] generalizes the relevance profile to a relevance matrix by con-
sidering an adaptive distance measure of the form dg(z,w) = (Q(z — w))?
with 2 € R™*" being a mapping matrix m < n subject to adaptation during
learning. The resulting matrix A = Q7€ is denoted as classification correlation
matrix (CCM) with entries A;; reflecting the correlations between the i*" and
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4t data features, which contribute to a class discrimination. The classification
influence profile (CIP), defined as A = (A1, ..., Ap)T with A; = 3 [Ay;] provides
the importance of the i*" data feature for classification.

3 Sensoric representations of graphs for efficient learning

Consider a reference graph r € G that may be understood as sensor in the space
G of graphs. Thus, each graph z € G\ r can then be represented relatively to r,
i.e. in terms of multiple measurement schemes relating = to r. We denote this
approach as sensoric response principle (SRP). A way of comprehending those
responses is in terms of object proximities, e.g. in our context graph kernels.
Consequently, the sensoric representation x € X of a graph x € G is given by
the sensoric response vector = d(z,r), with

d(z,7) = (du, (z,7),dp, (2,7), ... dp, (z,7))7 (2)

where d,, denotes the kernel distance corresponding to the graph kernel ;.
Hence, r = d(r,r) serves as a reference in the feature vector (proximity) space.
Fig. 1 visualizes this SRP. At the simplest, the reference r is chosen randomly
from G. To ensure no outlier was selected, a refinement step may be applied
that determines a new reference as the graph whose sensor representation w.r.t.
r is closest to the mean representation & of all graphs, i.e. Thew = x5 with
s = argmin, d(z, z;).

dn(1 ) =/, )~ 2508 LD + % D) |

graph ) graph kernel distance
~ /
@) j O
X rp =
@ sensoric response
T 1 for multiple kernels
O
space of graphs \

N

1 sensor

Fig. 1: Sensoric response features of graphs.

It is remarked that multiple references r € R = {r; }Lz‘l C G, |IR| < |9]
may be chosen as also suggested in [7], yielding = = (d(x,rl), .. .,d(x,rm|))
as a graph’s sensor representation. A set of optimal representatives R may
be learned by median Neural Gas [15], which, however, requires full distance
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matrices, whose calculation was to be avoided in the first place. The obtained
sensor representations of graphs (feature vectors) serve as input to GMLVQ
described in Sec. 2.2.

Why the sensor perspective? Generally, this procedure enables machine learning
methods that intrinsically rely on vectorial data, now to be applied to structured
data. By mapping the graphs to proximity space we avoid the restriction to
median and relational variants of classifiers. Further, the design of the sensor
principle results in savings in time complexity: Given |G| = N data points, |R|
references and N, kernel methods to be evaluated. Then the sensor principle
only requires calculation of each kernel distance from every graph to the reference
and thus O(2N - N, - |R|) with N, < N. In comparison, evaluating N, kernel

values between each pair of data points yields (’)(NT2 - Ng).

Why relevance learning? Graph kernels used in practice are incomplete, i.e.
there are non-isomorphic graphs z and y € G with ¢(x) = ¢(y) that cannot
be distinguished by the kernel [2]. This incomplete perspective on the graph
demands a careful kernel selection to reduce bias. However, problem-adequate
approaches are usually unknown in advance, making methods to learn their
optimal combination promising. Besides multiple kernel learning for SVM [3], a
kernel-related approach based on matrix learning by neighborhood components
analysis (NCA) [16] was presented in [6] for graphs. However, NCA is based on
the k-Nearest Neighbour algorithm, whose disadvantages are well-known.

4 Experiments

We evaluated our approach by training a GMLV(Q on sensoric representations
of chem- and bioinformatic graphs from the publicly available TUDataset [17].
Graph representations were obtained by computing graph kernel distances using
the GraKeL library [18].

Data set, graph kernel and classification settings In particular, we considered
the small molecule data sets MUTAG and AIDS and the bioinformatic data
set PROTEINS. All graphs are undirected and node-labeled. We constructed
graph feature vectors using the SRP based on a randomly selected reference from
the data set and distance computation based on eight graph kernels: the vertex
histogram (VH), shortest path (SP), Weisfeiler-Lehman-subtree (WL-VH), Core
shortest path (CORE-SP), ordered directed acyclic graph decomposition - sub-
tree h (Odd Sth), pyramid match (PM), propagation (PK) and neighborhood
hash (NH) kernel. We evaluated the GMLVQ-based relevance learning of sensoric
graph representations using 3 prototypes per class and 10-fold cross-validation.
Further, two baseline models were considered: 1) a simple GLVQ for comparison
with no feature, i.e. distance weighting and 2) a SVM from the benchmark [19]
for comparison with a non-SRP based pairwise proximity computation using
single graph kernels. Results from the latter are directly comparable as it bases
on the same data sets and kernel implementations.
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Results and discussion Table 1 gives an overview of the achieved classification
accuracies for the previously described models and datasets. Fig. 2 provides
insights into the influence of individual kernels on the classification.

& MUTAG

GMILVQ GLVQ SvM! otsr )
0 .
MUTAG 89.7 86.2 88.3 _AIDS
(£8.5) (£4.6) (£6.3) s o )
AIDS 99.1 98.3 99.7 i
(+1.2) (£0.5) (40.3) 0 oTENS
PROTEIN:
PROTEINS 75.1 72.0 76.5 0454
(£3.5) (£4.0) (£3.9) ’
! results from [19]: best performing ker- s ;«% 5‘2 %@ Q§\ & &
nels NH, PM and CORE-SP W~ P

Table 1: Mean classification accura- Fig. 2: CIPs obtained by GMLVQ.
cies with the standard deviation [%)].

GMLVQ outperforms GLVQ on all data sets, which suggests that a relevance
learning, i.e. a weighted kernel combination is beneficial for the class discrim-
ination. Furthermore, GMLVQ yields accuracies comparable to SVM with a
single graph kernel although its computation load is reduced significantly due
to the SRP. In [19] it is further found that state-of-the-art graph neural net-
works (GNNs) do not outperform the simpler graph kernel-SVM combination
for classifying (discrete) node-labeled graphs. Nevertheless, GNNs enjoy great
popularity, especially since graph kernels scale poorly for large data sets (with
hundreds of thousands of graphs). With the SRP, we now propose an alternative
that relies on sparse and interpretable models still applicable to large data sets.

5 Conclusion

In this contribution, we propose the use of a sensoric response principle for
converting proximity data obtained by graph kernels into vectorial features for
machine learning. Considering multiple kernels avoids the so-called feature bias
or an elaborate model selection, while using the sensor perspective reduces the
computation time of the kernels significantly. In combination with matrix learn-
ing LVQ, the approach allows problem-specific weighting of individual features.
In the experiments, we empirically showed the potential of the SRP in the con-
text of small molecule classification.

As the next step, we intend to extend the response principle introduced for
graph kernels to that of topological descriptors and graph edit distances [20]
in order to capture graph commonalities and differences even more comprehen-
sively. Also other strategies for prototype determination like in [21] should be
investigated in this context. We see future applications for graphs beyond the
scope of chem- and bioinformatics, as well as for data structures that might be
transformed into graphs [22].

449



ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1.
Available from http://www.i6doc.com/en/.

References

[1] Adria Cereto-Massagué, Maria José Ojeda, Cristina Valls, Miquel Mulero, Santiago
Garcia-Vallvé, and Gerard Pujadas. Molecular fingerprint similarity search in virtual
screening. Methods, 71:58-63, 2015.

[2] Nils M. Kriege, Fredrik D. Johansson, and Christopher Morris. A survey on graph kernels.
Applied Network Science, 5(1):6, 2020.

[3] Michele Donini, Nicold Navarin, Ivano Lauriola, Fabio Aiolli, and Fabrizio Costa. Fast
hyperparameter selection for graph kernels via subsampling and multiple kernel learning.
In ESANN 2017 Proceedings, pages 287—292, Bruges, Belgium, 2017.

[4] Bernhard Scholkopf and Alexander Smola. Learning with Kernels. MIT Press, Cambridge,
2002.

[5] David Nebel, Barbara Hammer, Kathleen Frohberg, and Thomas Villmann. Median
variants of learning vector quantization for learning of dissimilarity data. Neurocomputing,
169:295-305, 2015.

[6] Adam Woznica, Alexandros Kalousis, and Melanie Hilario. Adaptive Matching Based
Kernels for Labelled Graphs. In Advances in Knowledge Discovery and Data Mining,
volume 6119, pages 374-385, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[7] Robert P.W. Duin and Elzbieta Pekalska. The dissimilarity space: Bridging structural
and statistical pattern recognition. Pattern Recognition Letters, 33(7):826-832, 2012.

[8] Marika Kaden, Ronny Schubert, Mehrdad Mohannazadeh Bakhtiari, Lucas Schwarz, and
Thomas Villmann. The LVQ-based Counter Propagation Network — an Interpretable
Information Bottleneck Approach. In ESANN 2021 Proceedings, pages 581-586, Online
event (Bruges, Belgium), 2021.

[9] Feryel Zoghlami, Marika Kaden, Thomas Villmann, Germar Schneider, and Harald Hein-
rich. AI-Based Multi Sensor Fusion for Smart Decision Making: A Bi-Functional System
for Single Sensor Evaluation in a Classification Task. Sensors, 21(13):4405, 2021.

[10] Petra Schneider, Michael Biehl, and Barbara Hammer. Adaptive Relevance Matrices in
Learning Vector Quantization. Neural Computation, 21(12):3532-3561, 2009.

[11] Paulo Lisboa, Sascha Saralajew, Alfredo Vellido, and Thomas Villmann. The coming of
age of interpretable and explainable machine learning models. In M. Verleysen, editor,
ESANN 2021 Proceedings, pages 547556, Bruges, Belgium, 2021.

[12] David Haussler. Convolution kernels on discrete structures. Technical Report, 1999.

[13] Atsushi Sato and Keiji Yamada. Generalized Learning Vector Quantization. In Advances
in Neural Information Processing Systems, pages 423-429, Cambridge, MA, USA, 1996.
MIT Press.

[14] Barbara Hammer and Thomas Villmann. Generalized relevance learning vector quanti-
zation. Neural Networks, 15(8):1059-1068, 2002.

[15] Marie Cottrell, Barbara Hammer, Alexander Hasenfu}, and Thomas Villmann. Batch
and median neural gas. Neural Networks, 19(6-7):762-771, 2006.

[16] Jacob Goldberger, Sam Roweis, Geoff Hinton, and Ruslan Salakhutdinov. Neighbourhood
Components Analysis. In Advances in Neural Information Processing Systems, pages
513-520, Vancouver, British Columbia, Canada, 2005.

[17] Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and
Marion Neumann. TUDataset: A collection of benchmark datasets for learning with
graphs. In ICML 2020 Workshop on Graph Representation Learning and Beyond, 2020.

[18] Giannis Siglidis, Giannis Nikolentzos, Stratis Limnios, Christos Giatsidis, Konstantinos
Skianis, and Michalis Vazirgiannis. GraKeL: A graph kernel library in python. Journal
of Machine Learning Research, 21:54:1-54:5, 2020.

[19] Giannis Nikolentzos, Giannis Siglidis, and Michalis Vazirgiannis. Graph Kernels: A Sur-
vey. Journal of Artificial Intelligence Research, 72:943-1027, 2021.

[20] Alberto Sanfeliu and King-Sun Fu. A distance measure between attributed relational
graphs for pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics,
SMC-13(3):353-362, 1983.

[21] Benjamin PaaBen and Thomas Villmann. Prototype selection based on set covering and
large margins. Machine Learning Reports, 14(MLR-03-2021):35-42, 2021.

[22] Lucas Lacasa, Bartolo Luque, Fernando Ballesteros, Jordi Luque, and Juan Carlos Nuifio.
From time series to complex networks: The visibility graph. Proceedings of the National
Academy of Sciences, 105(13):4972-4975, 2008.

450





