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Abstract. Continual Learning (CL, sometimes also termed incremental
learning) is a flavor of machine learning where the usual assumption of
stationary data distribution is relaxed or omitted. When naively apply-
ing, e.g., DNNs in CL problems, changes in the data distribution can cause
the so-called catastrophic forgetting (CF) effect: an abrupt loss of previous
knowledge. Although many significant contributions to enabling CL have
been made in recent years, most works address supervised (classification)
problems. This article reviews literature that study CL in other settings,
such as learning with reduced supervision, fully unsupervised learning, and
reinforcement learning. Besides proposing a simple schema for classifying
CL approaches w.r.t. their level of autonomy and supervision, we dis-
cuss the specific challenges associated with each setting and the potential
contributions to the field of CL in general.

1 Introduction

Continual learning is a field of machine learning where the data distribution is
not static. It is a natural framework for many practical problems where the
data arrives progressively, and the model learns continuously. For example, in
robotics, robots need to adapt to their environments to interact and realize
actions constantly, or recommendation systems also need to adapt constantly to
the new content available and the new needs of users. However, in recent years,
the field of continual learning has focused mainly on one type of classification
scenario: class-incremental. This scenario evaluates how models can learn a
class once and remember it when new class data arrives. While it is important
to solve this problem, using only one type of scenario can lead to over-specialized
solutions that can not generalize to different settings. In this paper, we propose
to review the literature dealing with other settings than the default one (class-
incremental) and more generally, fully supervised scenarios. The goal is to shed
light on efforts made to diversify the evaluation of continual learning.

2 Framework and Goals of Continual Learning

Continual learning (CL) is a machine learning sub-field that studies learning
under time-varying data distributions. This relaxes one of the fundamental
assumptions of statistical learning theory ([1]), which states that the data follows
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a stationary distribution. One advantage of this assumption is its simplicity,
whereas CL scenarios are very diverse, depending on the nature of the non-
stationarity. In CL, it is therefore very important to clearly define the scenario,
the goals of learning, the evaluation measures, and the loss functions. The
following section describes typical non-stationarities of the data distribution that
have been considered in the literature (see also [2, 3]).

2.1 Data distribution Drifts

CL under data distribution shifts needs memorization mechanisms adapted for
the type of non-stationarity, which requires assumptions by the used algorithms
in the face of an infinite number of possible ways a distribution can be non-
stationary. For simplicity, we will list several typical definitions used for super-
vised learning (e.g., classification) but that can be generalized to other settings.

A simple way to categorize non-stationarities is based on class information.
We may distinguish two types of shifts [2] in this case: concept shift, where the
annotation of existing data changes [4] and virtual shift, where we get new data,
but the annotation does not change. Usually, the term shift is employed for
sudden changes in data distributions, whereas the term drift is used for gradual
changes over time. In supervised CL, virtual shifts are the most common non-
stationarities that have been studied. We can distinguish the special cases of
virtual concept shift, implying new data and new labels, and domain shift, where
new data of known labels are observed. Those two settings are also known as
respectively class-incremental and instance-incremental [5, 6]. The objectives
to be optimized may change over time as well [3], as in continual RL [7, 8, 9].

2.2 Common CL constraints

If CL were not subject to constraints, there would be a simple solution to any sce-
nario. It involves storing all incoming samples and re-training every time a deci-
sion is expected, [10]. This entails a time and memory complexity that is at least
linear in the number of processed samples. However, most CL proposals assume
that memory is limited in some way, preventing this (obvious) solution. Many
approaches similarly assume that the storage of samples is restricted. Other re-
sources constraints subject of study are: computational cost, memory, data pri-
vacy, fast adaptation, inference speed, transfer. Other constraints that are more
related to the reliability of approaches are stability and explainability. A discus-
sion of CL constraints can be found in, e.g., [11], whereas evaluation measures
that take these constraints into account are given in [Lesort2019Continual].

3 The default scenario for CL

A particular supervised setting, which we will refer to as the default scenario,
is currently dominating CL literature. It is based on a classification problem
divided into a small number of sub-tasks. Virtual concept shift occurs abruptly
at sub-task boundaries by the apparition of new samples belonging to previously
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Figure 1: The default scenario for CL. The data stream is assumed to be parti-
tioned into sub-tasks. Statistics within a sub-task are considered stationary, and
sub-task data and labels (targets) are assumed to be disjoint, i.e., from different
classes. Sub-task onsets are assumed to be known as well.

unseen classes, see Fig 1. Usually, the sub-task onsets/boundaries are known.
A consequence of this disjointness of sub-tasks is that no pure concept shift is
involved: the annotation for a given data point will never change or be subject
to conflicts as learning progresses.

In the default scenario, the goal of CL is usually to learn the complete statis-
tics of all sub-tasks as if they had been processed all at once, rather than one
after the other. Samples may be processed one by one, or all at once for a given
sub-task. In some works, the sub-task index is known at test time and used for
selecting the correct head of a multi-headed DNN.

The assumptions made in the default scenario are justified in many cases.
However, other scenarios, e.g., in robotics, may be found where they impose too
severe restrictions. Moreover, many characteristics of the default scenario, such
as “drift are abrupt” or, “tasks are not revisited” lend themselves to benchmark
overfitting. Consider sub-task T2 in Fig 1: here, a DNN could punish incorrect
decisions for class “1” more strongly than incorrect decisions for classes from the
current sub-task, since the default scenario assumes that sub-tasks are disjoint.
Even if researchers do not consciously exploit these assumptions, the employed
CL algorithms may rely on them indirectly. It is fundamental to perform exper-
iments in scenarios where these assumptions do not hold.

Thus, creating diverse benchmarks, as well as approaches that do not crit-
ically rely on the assumptions from the default scenario, should be an ongoing
effort. This effort should be pushed notably by existing continual learning li-
braries such as Continuum [12], Avalanche [13] or Sequoia [7].

3.1 CL approaches for the default scenario

This section is not meant to be exhaustive, since the default scenario is not the
focus of this article, please see, e.g., [14, 15] for this.

Broad strategies for performing CL in the default scenario are regularization
[16, 17], replay [18, 19, 20] and dynamic architectures [21, 22, 23, 24, 25]. Regu-
larization penalizes changes to model parameters that are deemed important for
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past sub-tasks. This is usually achieved by penalty terms in the loss function,
and it is assumed that new sub-tasks add only new data and classes. Dynamic
architecture methods extend models over time in order to separate previously
learned parameters from currently optimized ones, thus reducing cross-talk and
forgetting (but equally assuming that new sub-tasks contain only new data). Re-
play methods store received data for subsequent use in re-training (rehearsal).
Instead of relying on stored data, re-training can also be performed using samples
produced by generative models (generative replay).

Replay is known to be an effective method for preventing catastrophic forget-
ting (CF), especially in class-incremental settings [26, 14], but also for continual
reinforcement learning [27, 28, 19] or unsupervised learning [29, 30, 31].

3.2 Metrics and evaluation procedures

In the default scenario, various measures related to the classification error are
common, which have been discussed in, e.g., [32, 33, 34]. A common baseline is
termed cumulative performance, obtained by evaluating models on the merged
test sets from all sub-tasks, which corresponds to learning with stationary statis-
tics. This baseline is often considered an upper bound for CL performance.

In addition, [17] proposed the notions of forward and backward transfer:
forward transfer (FT) measures how training on sub-task i impacts performance
on a future sub-task j > i. For backward transfer (BT), the impact on previous
sub-tasks j < i is considered. The common case in CL is negative BT indicating
forgetting, but positive BT is theoretically possible as well.

Many authors, e.g., [16], assume that (although sub-tasks are presented
sequentially) all sub-task data are available for model selection and hyper-
parameter tuning. For example, tuning EWC’s regularization strengths λi for
each sub-task is often done in hindsight.

Some authors [35, 36, 37], especially in works using multi-head DNNs, assume
that the sub-task ID is known during testing. In the limit where each sub-
task contains only a single class, providing the sub-task ID at test time means
providing the class label. Even if sub-tasks are more diverse, the sub-task ID
contains significant information and may thus confer unfair advantages. The
question of evaluation protocols in CL is discussed in [11, 38].

3.3 Benchmarks

Benchmarks for the default CL scenario are mostly derived from datasets such
as MNIST, CIFAR10/100, Imagenet, SVHN etc. to create class-incremental or
domain-incremental scenarios. The permuted MNIST benchmark was initially
popular [16, 39, 40] but is less so now because it can, to good accuracy, be solved
even without dedicated CL schemes [11]. Some authors use Atari games [41],
Mujoco [42] or Meta-World [43] as benchmarks. CL-specific variants of standard
benchmarks such as, e.g., colored MNIST [44] are widely used as well since they
can be used to investigate specific aspects of CL, see [45, 46].
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4 Generalizations of the default scenario

The default scenario is useful for evaluation and represents a controlled setting
for CL. In less controlled settings, fully annotated data may be unavailable, or
supplementary constraints may be imposed. We find it convenient to introduce
a new taxonomy of CL approaches based on their level of autonomy.

4.1 Classifying the autonomy level of CL algorithms

The various applications of continual learning can be grouped into autonomy
levels. Obviously, CL should get harder as less and less human supervision is
supplied. We identify two dimensions of autonomy:

Objective Autonomy denotes the autonomy regarding the objective to achieve
(labels, targets, rewards), which we group into 4 levels:
• Level 0: Full data annotation: supervised.
• Level 1: Sparse labelization: RL, active learning, sparse training.
• Level 2: No annotation for training, query for fast adaptation.
• Level 3: No annotation for training, zero-shot adaptation.
For levels 2 and 3, continual training can be seen as pre-training for the unknown
future task. If the scenario objective is unsupervised, then we can assume that
it is similar to full data annotation.

Continual Learning Autonomy concerns autonomy regarding distribution
shifts (task label, task boundaries):
• Level 0: Full task annotation at train and test.
• Level 1: Full task annotation at train, no test task labels.
• Level 2: Sparse task annotation at train, no test task labels: example task
boundaries only without train task label.
• Level 3: No task labels at all: task-agnostic.
This taxonomy still holds for smooth transitions. For class-incremental prob-
lems, the task-agnostic setting is inapplicable since the task information is in the
class labels. We can now characterize CL by (i j), where i represents objective
autonomy, and j for the CL autonomy. Hence, (0 1) describes a class-incremental
scenario, i.e., a classification setting with fully annotated data and task labels for
training but not for test data. It is important to note that those ratings classify
the complexity of a given scenario. For example, the default scenario (class-
incremental) assesses a complexity level of (0 1), domain incremental without
task labels would be (0 2), task agnostic continual RL [47] (1 3). To validate
the autonomy of an approach, it should be evaluated in adequate scenarios.

Investigating the cost of lowering or increasing a task’s complexity level is
fundamental for applications of CL. We want to make our algorithms scale up to
arbitrary complexity levels, but in practice, we would always choose the lowest
possible complexity. If possible, solving a scenario with a complexity level (0 1)
is more efficient than solving the same scenario with a level of (3 3).
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4.2 Towards a Generalization of the Default Setting

Some variants of supervised CL exist that alleviate the need for annotated data.
The reduction of annotations can apply for restricted access to the task labels
as in task-agnostic CL [48, 49], or by reducing the labels’ availability as in
continual active learning [50, 51], or in semi-supervised continual learning, [52].
As described in Sec. 4.1, reducing access to task supervision lead to evaluating
a CL autonomy level of 2, and removing all access to it lead to evaluating a CL
autonomy level of 3. On the other hand, reducing data annotation lead to an
objective autonomy of 1 instead of 0 when the full annotation is available.

Among potential supplementary constraints, data can be streamed without
the possibility of multi-epoch training as in online training [53, 54], or the data
can be imbalanced [55, 56], or mixed with spurious features [57]. Scenarios where
the annotations change over time (real concept drift) have been investigated in
[3, 58, 4]. Some contributions [59] relax the condition of disjoint sub-tasks and
assess the impact of several fundamental CL strategies such as regularization
and replay. Yet others [60, 61] demonstrate that detecting sub-task boundaries
autonomously is feasible by using density estimation methods.

To the generalized settings cited above, supplementary constraints (as dis-
cussed in Sec. 2.2) may be added, making them even harder. If this brings CL
closer to real-life applications, solutions are required that do not overfit a par-
ticular CL setting. Currently, the field of CL is fundamentally meta: implicitly,
the goal is not to train the best possible model w.r.t. non-continual baselines,
but rather to create algorithms that show maximal generalization to other CL
settings. Therefore, experimenting with generalized supervised scenarios can
assess algorithms’ robustness and improve generalized CL.

5 Unsupervised Continual Learning

Whether a machine learning task is considered supervised or not depends on the
formulation of the loss function. In fact, no assumptions whatsoever are made
concerning the loss in the definition of CL given in Sec. 1. Therefore, CL is
naturally transferred to density modeling, clustering, generative learning, and
unsupervised representation learning.

5.1 Density modeling

Density modeling aims at approximating the probability density of a given set
of data samples directly by minimizing a log-likelihood loss. Typically, this is
achieved using mixture models, which model the data density as a weighted sum
of N parameterized component densities, e.g., multivariate Gaussian densities or
Dirichlet distributions. Density modeling allows performing, among other func-
tions, Bayesian inference and sampling. These functionalities spawned increased
interest in mixture modeling a few years back, particularly in robotics [62, 63,
64, 65]. The main issue for CL in mixture modeling is that concept drift or
shift may require an adaptation of N , which motivates heuristics for adding and
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removing components. Current approaches using generative replay are proposed
in, e.g., [30]. Mixture models usually adapt only a small subset of components
for each update step due to their intrinsic reliance on distances instead of scalar
products. This is why they are less prone to catastrophic forgetting than DNNs,
an effect that has been demonstrated for self-organizing maps in [66] which are
an approximation to Gaussian Mixture Models (GMMs), see [67]. Modeling the
data density allows partitioning data space into Voronoi cells, in each of which
a separate linear classifier model can be trained. This is the essence of the pop-
ular Locally Weighted Projection Regression (LWPR) algorithm [68] which was
explicitly constructed for continual classification in robotics.

5.2 Clustering

Clustering is, in a certain sense, an approximation to density modeling, although
inference is limited to determining the precise component a given data sample
was generated from. Clustering methods are normally trained using a k-means
type of algorithm. CL for clustering algorithms faces the same basic issue as
in density modeling: a potentially variable number N of cluster centers during
concept drift or shift. This has been demonstrated in, e.g., [69, 70, 71].

5.3 Generative learning

Generative learning aims to generate realistic samples (typically images) that
are similar to a set of training data. Typical models are generative adversar-
ial networks (GANs), variational auto-encoders (VAEs), PixelCNN, FLoW or
GLoW, but many other variants have been proposed, see, e.g., [72] for a review.
Training such generative models can be performed, e.g., in the CL default sce-
nario introduced in Sec. 3 (apart from the supervision information), which leads
to catastrophic forgetting (CF) without additional measures. Several of the ap-
proaches used in supervised learning have been successfully applied to training
generative models: knowledge distillation [73], EWC [74] and replay [75, 76, 77,
78, 29]. To our knowledge, no generic approaches that are specific to generative
learning have been proposed, apart perhaps [79] where it is proposed to learn
specific transformations. This, however, is very specific to a particular kind of
(image) data and would have to be adapted if other kinds of data were targeted.

5.4 Continual Representation Learning

Unsupervised representations learning for downstream applications is a common
use case for unsupervised learning. It was a motivations for various types of
auto-encoders and generative models in the early days of deep learning. In
CL, unsupervised criterion to learn representations might be useful to avoid
overfitting a specific task and improving performance on downstream tasks [80,
30, 31]. Unsupervised pre-training can also be useful for learning a general
feature extractor that can be frozen for future tasks [28, 81, 82].
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5.5 Challenges of unsupervised CL

Unsupervised learning offers general learning criteria that can avoid the over-
specialization of supervised training and reduce forgetting. Nevertheless, unsu-
pervised CL faces the same challenges as supervised CL, and the default scenario
for supervised CL can be transferred. Moreover, in practice, unsupervised train-
ing tends to be more complex than supervised training, especially for generation
and density modeling, since it is harder to model a distribution than to deter-
mine a separating hypersurface between classes in data space. With the added
complexity of CL, unsupervised learning can be a formidable problem, especially
w.r.t. model and hyper-parameter selection.

6 Continual Reinforcement Learning

In reinforcement learning (RL), an agent learns to interact with its environment
by choosing a specific action for each state based on a reward signal. The (un-
known) underlying process is formalized as a Markov decision process (MDP),
where an optimal policy maximizes an expected reward. This scenario is in-
herently a CL setting, since the evolution of the policy throughout the learning
process will automatically lead to a non-stationary data distribution. Changes
in the environment or in the objective to fulfill can lead to additional non-
stationarities. Hence, RL requires the ability to cope with non-stationary data.
We will use the term Continual Reinforcement Learning (CRL) for denoting RL
in settings that go beyond the usual assumptions of non-stationarity made in
conventional RL.

6.1 Existing Approaches

The works presented in [83, 84] introduce the importance of CL at an early stage
and especially investigate them in the context of reinforcement learning. More
recent works, e.g., [85, 19] revisit this area and consider additional aspects, such
as catastrophic forgetting. Some frameworks to guide future research have also
been published [5, 8]. Both provide a comprehensive overview of the synergies
between continual and reinforcement learning.

RL Approaches Experience replay [86, 19, 87] is the most common approach
to counter non-stationarities in RL. Several variants are introduced, e.g., [88,
89, 90, 91, 92]. Continuous control, multi-task, and multi-goal are also research
topics intersecting with continual reinforcement learning, but their scenarios are
not always defined in a consistent fashion in the literature. In general, the goal is
to enable transfer learning between policies, which, however, omits the capacity
for forgetting or re-adaptation. Some works assume a static objective [93, 94,
95, 96, 97], others a static agent and/or environment [98, 99, 100] or none of
both [101, 102, 103]. In contrast, multi-agent reinforcement learning is mostly
related to some kind of joint training and is hence not related to CL.

For CRL, the agent needs to acquire new skills to handle time-varying con-
ditions, such as changes in environment [104], observations or actions, and addi-
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tionally must retain the old knowledge. A variety of approaches has been pub-
lished, among which knowledge-based distillations [27, 28] and context-based
decompositions [105, 106] are popular. Other works are concerned with the em-
ployed model [107, 108, 109, 110], off-policy algorithms [111], policy gradient
[112] or a task-agnostic perspective [47]. Evaluations of known CL methods
(e.g., GEM, A-GEM, and replay) are also applied in the RL domain [113, 9].

Benchmarks An overview of CRL environments can be found in [114]. Dedi-
cated benchmarks which allow a systematical assessment are: Meta-World [43],
Continual World [115] and L2Explorer [116].

6.2 Assumptions in CRL

Three assumptions are commonly made in CRL: Foremost, a decomposition
into sub-tasks is assumed, even if their onset is unknown since most dedicated
CL methods (see Sec. 3.1) assume the existence of distinct sub-tasks. Another
assumption concerns samples, which are assumed to be non-contradictory within
sub-tasks, meaning the assessment of rewards changes only between sub-tasks, if
it changes at all. Finally, it is a common assumption that knowledge of sub-task
boundaries is provided. Most existing works are using information about sub-
task boundaries as if they were provided by an oracle, without the possibility to
recognize or determine them autonomously.

6.3 Challenges

Environment-related On a short timescale, observations will always be non-
stationary, even if the environment is. In addition, the environment itself can
change gradually or abruptly (environment drift/shift). This results in novel
states or transitions between them, resulting in an enlargement of the MDP.

Goal-related By maximizing the reward signal, the agent attains a defined
objective. If the reward function changes, the agent experiences divergent in-
formation, leading to an inconsistent policy. In this setting, the definition of
states, actions and transitions does not change, so the underlying MDP remains
structurally intact. However, other rewards are assigned to previously learned
mappings, enforcing changes of transition probabilities.

Agent-related The decreasing influence of exploration, regardless of whether
off- or on-policy methods are used, temporarily creates a source of non-stationarity,
resulting in a time-varying sampling of the state-action space even with a static
policy and a static environment. Additionally, sensors or actuators may degrade
or undergo deliberate manipulations.

Sub-task definition For scenarios where the environment changes in a discrete
fashion, we can introduce the notion of sub-tasks as in the default scenario for
supervised CL, see Sec. 3. Sub-task onsets can be unknown, and the detection
of boundaries may be difficult if the drifts are gradual. Moreover, the number
of sub-tasks can be high, up to a point where the concept of sub-tasks becomes
questionable. Lastly, similar states and actions may appear in sub-tasks, but
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with different rewards, so sub-tasks may not be disjoint or even contradictory,
requiring re-learning, a concept absent from the default CL scenario.

7 Discussion - Conclusion

The field of CL has expanded rapidly in recent years, which is why many as-
pects of CL are still fluid and not subject to a common consensus among re-
searchers. This is evidenced by a wide variety of assumptions, evaluation met-
rics, see Sec. 3.2 and constraints, see Sec. 2.2. The so-called default scenario,
see Sec. 3, is the nearest thing to a commonly agreed scenario, yet many de-
tails fluctuate strongly between contributions. This leads to several interesting
consequences and opportunities for further research:

CL comparability A direct consequence is the difficulty to directly compare
results of different articles. This underscores the need, in CL more than in other
domains of machine learning, to describe evaluation procedures and, where possi-
ble, make use of existing libraries (see Sec. 3 and 6.1) and evaluation procedures.
Furthermore, CL is a multi-objective problem (Sec. 2.2) where the cumulative
performance is important, but where other measures (Sec. 3.2) matter as well.

CL autonomy As explained in Sec. 4.1, CL approaches should also be evalu-
ated based on the complexity and autonomy of the scenario they can generalize
to, to prevent them from overfitting to a specific CL scenario or assumptions.

CL scalability An aspect of quantitative performance measures is scalability.
Depending on a potential application context, CL, even in the default scenario,
may be faced with a huge number of sub-tasks, each again containing enormous
amounts of samples. If this were not the case, the cumulative baseline, or some
variant of GDumb (see Sec. 3.2), would be a much less costly alternative to
using dedicated CL methods. Time and memory complexity w.r.t. the number
of sub-tasks should be included in all new CL works to ensure comparability.

CL generalization As was shown in Sec. 4, 5 and 6, the default CL scenario
of Sec. 3 can be generalized in many ways. These chapters show that open issues
remain, both technical and conceptual, when generalizing CL.

This review article attempts to give an overview of the current state of CL
beyond the purely supervised default scenario, see Sec. 3. We describe the vari-
ous complexification of the default scenario and the different learning paradigms,
and propose a classification based on the autonomy characteristics of algorithms.
We believe that attempts to generalize CL pose important questions about the
fundamental assumptions behind CL. We thus encourage CL researchers to care-
fully reflect upon the implicit, hidden assumptions in each CL approach they are
dealing with and whether they can (and should) be relaxed. In a still-fluid field
such as CL, a continuous re-examination of assumptions may lead to new solu-
tions that strongly contribute to the advancement of the field.
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