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Abstract. Deep neural networks tend to make overconfident predictions.
Although ensemble methods improve the predictive performance by pro-
ducing better calibrated confidences, they are computationally expensive.
Thus, we propose a real-time capable ensemble method for object detection
that significantly improves the performance with only a minor increase in
runtime. Our method diversifies the prediction of the class probabilities
on the anchor space using multiple classification heads. A regularization
further increases the diversity of the heads, making ensemble distillation
unnecessary. On the KITTI benchmark dataset, our approach increases
the mean average precision of an SSD based network from 0.58 to 0.71.

1 Introduction

Deep neural networks (DNNs) are state-of-the-art in many machine learning
challenges, outperforming classical methods in computer vision, object detection,
and speech recognition [1, 2]. However, there are still a number of problems
when DNNs are used in real-time and safety-critical systems. This includes, for
instance, their ability to generalize, as DNNs poorly quantify uncertainty and
tend to make overconfident predictions [3, 4].

Ensemble methods improve the predictive performance of DNNs, providing
better calibrated confidences by averaging over the ensemble output [4]. Ensem-
ble methods can for example be based on a certain number of independently
trained networks [5] or a monte-carlo dropout model [6]. However, these meth-
ods significantly increase the computational complexity during inference since
multiple forward passes need to be calculated.

Therefore, recent work has focused on distilling both the diversity and the
knowledge of an ensemble into a single network [3]. The model used in [3]
consists of one network body and multiple networks heads. Thus, it is trained
to approximate the predictions of each ensemble member with its corresponding
network head. Since the body is shared among all heads, the computational
complexity is significantly lower compared to the distilled ensemble.

However, the setup used in [3] only works for image classification. Further-
more, training and distilling an ensemble is time-consuming, especially for more
complex tasks such as object detection. Therefore, we transfer the multi-head
approach to object detection by making two major contributions:

� We show how to efficiently diversify an anchor-based object detector by
using multiple classification heads. In this way, different class probabilities
are predicted for each anchor that can be averaged during inference.
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� We use suitable regularization to increase the diversity of the classifica-
tion heads during training. This replaces the distillation of a pretrained
ensemble, which significantly reduces the required training time.

2 Related Work

Ensemble methods use a number of different models to estimate uncertainty
based on the variance among predictions: The more the outputs differ at infer-
ence time, the more the input is expected to be outside the generalization area
[4]. Furthermore, averaging the ensemble predictions increases the predictive
performance compared to a single network of the same size [5, 6]. In fact, the
higher the variance among the predictions, the more balanced the averaged class
scores. Since ensemble methods have high computational and memory require-
ments, recent work tried to make them more efficient. This can be done either
by distilling the diversity of an ensemble into a network with multiple heads [3],
or by learning the conditional predictive distribution of an ensemble [7, 8].

Unlike image classification, object detection predicts both class and lo-
cation [9]. Two-stage detectors first make suggestions about object locations
using predefined anchors [10, 11]. These locations are then projected into the
feature space to predict the corresponding object class. In contrast, single-stage
detectors predict class scores for each object category in each anchor, includ-
ing the background class [12]. Such networks consist of one feature generating
backbone, one classification head to predict the class probabilities for each pre-
defined anchor, and one localization head to predict the bounding box regression
for each anchor. Both heads consist of multiple layers to process feature maps
of different resolution [12]. Afterwards, the anchors are processed into objects.

Single-stage detectors are computationally less complex than two-stage de-
tectors. Since our approach emphasizes real-time capability, we use the widely
available Single Shot MultiBox Detector (SSD) for our experimental setup [12].
However, our approach can be applied to any anchor-based detector.

3 Model

Since object detectors like the SSD predict both the class and the location of
objects, uncertainties can be modeled for both types of prediction. Given that
misclassifications and undetected objects (such as covered pedestrians) are the
most serious problems in real-world applications [9], we focus on the diversifi-
cation of the predicted class probabilities by introducing multiple independent
classification heads.

The upper part of figure 1 shows the training graph of our multi-head SSD,
exemplified with three classification heads. Each head uses the same features
generated by the shared backbone, but makes its own class predictions for each
predefined anchor. As in the case of an ensemble, the heads are trained inde-
pendently, getting their own classification losses to allow diversity. Additionally,
regularization is used to further increase the diversity among the classification
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(b) Inference graph.

Fig. 1: Training and inference graph of our multi-head detector, exemplified with
three classification heads. For each predefined anchor, each head makes its own
predictions regarding the expected class probabilities. To increase the diversity,
the heads are trained independently, using an additional diversity regularization.
During inference, the mean of the predicted class probabilities is calculated for
each anchor, which results in better calibrated confidences, causing more objects
to be detected by post processing.

heads, replacing the distillation of a pretrained ensemble. Such diversity reg-
ularization can be done for example by using Negative Correlation [13], which
can be applied to the classification heads as follows:

Regularization = − 1

N

N∑
n=1

(yn − y)
2
, with y =

1

N

N∑
n=1

yn .

Here, N is the number of classification heads, yn the output of head n, and y is
mean output over all heads. Consequently, the training loss aggregates to:

Loss =
1

N

N∑
n=1

Cls-Lossn + Loc-Loss + λRegularization ,

where Cls-Lossn is the classification loss of head n, Loc-Loss is the localization
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Model mAP AP Person AP car AP truck Runtime
SSD 0.58 0.29 0.73 0.72 100%
3-Head SSD 0.66 0.38 0.79 0.80 118%
5-Head SSD 0.71 0.42 0.85 0.84 140%

Table 1: Mean average precision (mAP), class-dependent average prevision (AP),
and runtime for a different number of classification heads.

loss, and λ is the regularization parameter. The higher λ, the higher the expected
diversity among the classification heads.

The lower part of figure 1 shows the inference graph of our multi-head
SSD. Here it is important to calculate the mean value over the predictions of
the classification heads before processing the anchors into objects. Otherwise, it
would no longer be possible to assign the predicted objects of the different heads
to each other without applying clustering methods. In contrast, calculating the
mean increases the predictive performance on the anchor level, allowing more
objects to be detected. Thus, the whole post processing remains the same.
In fact, since we only diversify the class predictions on the anchor space - by
using a shared backbone and by calculating the mean over the predictions of
the classification heads - the computational overhead is very low, especially
compared to a Deep Ensemble [5] an MC-dropout model [6].

4 Experiments

We test our multi-head SSD on KITTI, a well-known benchmark dataset for
2D object detection [14]. It consists of 7485 RGB images divided into training,
validation, and test data. The labels contain four classes: person, car, truck,
and background. We train for 50k iterations, using the SGD optimizer with the
Nesterov Momentum set to 0.9 and a batch size of 32. The initial learning rate
is 10−4, which is divided by 10 after 30k and 40k iterations. Furthermore, we
apply random crops, mirroring, and photometric distortions. For our multi-head
models, the regularization parameter λ is set to 10−2, which was found by an
ablation study (see table 2).

First, we compare our approach to the standard SSD architecture. Table 1
shows the results with a different number of classification heads. The standard
SSD has a mean average precision (mAP) of 0.58, with the average precision
(AP) for persons (0.29) being significantly worse than for cars (0.73) and trucks
(0.70). The runtime of the standard SSD is used as a reference point at 100%.

Compared to this, our 3-Head SSD increases the mAP by 14% from 0.58 to
0.66. The highest improvement is for the person class, where the performance
increases significantly by 31% from 0.29 to 0.38. This can also be seen in figure
2, which shows a test image containing a lot of pedestrians. The upper part
shows the persons detected by the standard SSD. Here it is noticeable that both
the covered persons (e.g., behind the bicycles) and the persons located further
away from the camera are poorly detected. As can be seen in the lower part
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Model λ mAP AP Person AP car AP truck
3-Head SSD 0 0.59 0.31 0.73 0.70
3-Head SSD 10−3 0.63 0.33 0.77 0.79
3-Head SSD 10−2 0.66 0.38 0.79 0.80
3-Head SSD 10−1 0.64 0.34 0.78 0.79

Table 2: Performance of our 3-Head SSD with different regularization values.
The higher λ, the higher the diversity among the classification heads.

Standard SSD

3-head SSD

Fig. 2: Compared to the standard SSD, our 3-Head SSD detects significantly
more pedestrians in the image, including the ones covered by bicycles.

of figure 2, our 3-Head SSD detects significantly more persons, including the
ones located behind the bicycles. Relative to the standard SSD, the runtime
increases only slightly by 18%. In comparison, a Deep Ensemble consisting of
three independent models increases the runtime by 200%.

Compared to our 3-Head SSD, our 5-Head SSD further increases the AP
for each class. The mAP improves from 0.66 to 0.71 and is thus 22% higher
compared to the standard SSD. Here, the AP for persons improves by 44% from
0.29 to 0.42. Comparing the runtime of the three networks, it is noticeable that
it increases by about 10% for each classification head that is added.

Second, we make an ablation study on the impact of our diversity regulariza-
tion. Here we claim that using the Negative Correlation regularization increases
the diversity of the classification heads, improving the predictive performance
at least up to a certain point. Thus, table 2 shows the results of our 3-Head
SSD trained with different values of the regularization parameter. The follow-
ing observations can be made: 1.) Without regularization, our model is only
slightly better than the standard SSD (0.58 vs. 0.59 mAP), 2.) Increasing λ up
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to 10−2 improves the mAP significantly from 0.59 to 0.66, and 3.) If λ is too
high, the performance drops again. Consequently, the diversity regularization is
an essential component and it confirms that a higher diversity among the heads
is able to increase the predictive performance.

5 Conclusion

In this paper, we propose an effective and easy-to-implement ensemble method
for 2D object detection. Our model uses multiple independent classification
heads to combine different predictions for the class probabilities of the anchor
space. Furthermore, we apply Negative Correlation regularization to increase the
diversity among the classification heads, making ensemble distillation unneces-
sary. In this way, our method significantly improves the mean average precision
of an SSD detector from 0.58 to 0.66 with only 18% increase in runtime.
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