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Abstract. Pre training of language models on large text corpora is common prac-
tice in Natural Language Processing. Following, fine tuning of these models is per-
formed to achieve the best results on a variety of tasks. In this paper we question
the common practice of only adding a single output layer as a classification head
on top of the network. We perform an AutoML search to find architectures that
outperform the current single layer at only a small compute cost. We validate our
classification architecture on a variety of NLP benchmarks from the GLUE dataset.
The source code is open-source and free (MIT licensed) software, available at
https://github.com/TheMody/NASforSentenceEmbeddingHeads.

1 Introduction

In the last couple of years, the transformer architecture pioneered by Vaswani et al. [1]
has enabled large pre-trained neural networks to efficiently tackle previously difficult
Natural Language Processing (NLP) tasks with relatively few training examples. Pre-
trained transformer based language models, which produce a vectorized representation
of a given text input of arbitrary lengt, constitute a common tool which is deployed to
facilitate fast transfer of knowledge. These language models produce contextualized
word embeddings that are easy to process for a multitude of different tasks by shallow
neural networks or other machine learning tools - common technologies which are used
on top of such embeddings are methods such as SVM, clustering algorithms and linear
regression [2, 3, 4]. Most language models are pre-trained on a large corpus of text
data (for example Wikipedia, Reddit, etc.) using a variety of different unsupervised
pre-training objectives (Masked Language Modeling, Next Sentence Prediction, etc.)
[5, 6]. Further, besides an often shallow layer on top of the embedding, many common
architectures use a fine-tuning step on a specific task to achieve good performance [7].

In this paper we take a closer look at NLP architectures built on top of trans-
former models using subsequent fine tuning steps for its optimization. Based on current
best practices, we aim for an automation of these optimization steps w.r.t architectural
choices and training procedure. We achieve this by two contributions: first, we define
a landscape of promising options for a classification head beyond the commonly used
single layer neural network with a softmax activation. Second, we introduce an Au-
toML pipeline [8], which enables us to automatically search these options to find the
best possible classification architecture.

At present, the most common approach to fine tuning a language model is to process
the outputs of the transformer with a single layer neural network [1, 5]. In the last
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Fig. 1: Rough outline of all possible options for the search space of the proposed Au-
toML pipeline. (Not all options are used all the time)

years, more sophisticated fine tuning approaches have evolved to improve this baseline
approach. Some approaches focus on reducing the number of parameters that have to be
fine tuned for each individual task. This can be done by adding specialized classification
layers to the original network while keeping the original network weights frozen [9].

Other approaches take different avenues to address the challenges which occur
while fine tuning . One challenge is that the language model tends to forget the knowl-
edge acquired by its extensive pre-training during fine tuning, or it over-fits on new data
due to its inherent complexity and an often comparatively small size of the fine tuning
data set. The approach dubbed SMART [7] addresses these shortcomings by introduc-
ing a smoothness inducing regularization technique and an optimization method, which
prevents aggressive updating of the network weights.

In this paper we particularly introduce AutoML technologies, which enables us to
investigate a variety of additional layers on top of the language model, while also fine
tuning the weights of the underlying language model. To the best of our knowledge,
this constitutes one of the first approaches in which the effect of additional classification
architecture on the fine tuning process is extensively investigated.

2 Neural Architecture Search Space

The difficulty in finding a better classification head is caused by the fact that the trans-
former architecture is very powerful – hence it is able to adapt to most classification
tasks well but running the risk of forgetting. Hence a new and possibly complex clas-
sification head has to be able to add novel capacity to this capability, while not caus-
ing problems with vanishing gradients or other confounding factors for the base trans-
former. With this in mind we determine a space of architectural choices, which consti-
tute the possible search options in the neural architecture search which we are going to
propose:

• pooling type (max, mean, [CLS])
• freeze base architecture (True,False)
• fully connected network (MLP); subchoices are:

number of layers (1-5); number of neurons per layer (5-200))
• convolutional layer (True,False); subchoices are:

number of heads (5-200); kernel size (3-11); number of layers (1-5); skip con-
nections (True,False)
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• encoder blocs (True,False); subchoices are:
number of heads (1-16); number of layers (1-5)

A rough outline of the proposed Search Space for our neural architecture search can
be seen in Figure 1. The pooling type is specific to BERT and similar bidirectional
language models upon which we focus in this work. During training, BERT is con-
ditioned to produce a good embedding for classification in place of the [CLS] token
output. Other options common in literature to feed the output into the fully connected
network are mean and max pooling over all output tokens. In between the dense layers
of the MLP and the convolutional layers the activation function used is ReLU. 5 layers
and 200 neurons for any type of layer was deemed the maximum to keep the parameter
count of the new classification head to a reasonable amount (below 1% of the origi-
nal BERT architecture). The convolutional layers were padded with zeroes to keep the
input and output dimensions the same.

The search space spans 7.5e7 different possible combination options if one assumes
10 different search options for the number of neurons per layer and number of heads
during convolution. The search strategy used for our AutoML is Bayesian Optimization
[10] with Hyperband Scheduling [11], as a particularly promising technology in the
domain of architecture optimization. We refer to the output of this procedure, i.e., the
best configuration found by this approach in a specific traning task, as BERTtuned.

3 Experimental Approach

In this section we detail our experimental design to investigate the effects of differ-
ent architectures for Natural language classification tasks. We utilize AutoGluon [12]
and the BertHugginface library [13] for implementation and the pre-trained Bert model
(’bert-base-uncased’) for all experiments.

3.1 Datasets

The Glue dataset by Wang et al. [14] is a collection of various popular datasets in NLP,
and it is widely used to evaluate common natural language processing capabilites. All
datasets used are the version provided by tensorflow-datasets 4.0.1. We also evaluate all
approaches on the small datasets. These are the same datasets as described below, only
with the training data set size reduced to 500 randomly drawn samples. This scaling
enables us to judge the capability of the architectural choices to adapt to new tasks
based on a small number of training data only. More specifically, we use the Corpus
of Linguistic Acceptability cola, the Stanford Sentiment Treebank sst2, the Microsoft
Research Paraphrase Corpus mrpc, Recognizing Textual Entailment rte, and the Multi-
Genre Natural Language Inference Corpus mnli.

3.2 Baseline and Implementation Details

As a Baseline comparison we evaluate BERT with a single dense layer used for classifi-
cation on top and a learning rate of 2e-5, henceforth referenced to as BERTbase. The
pooling operation used is [CLS]. Mean and max pooling were also tried but produced
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Table 1: The final classification architectures found for the GLUE datasets.
method sst2 cola mrpc mnli rte qqp

pooling mean [CLS] [CLS] max [CLS] max
number linear layers 5 1 4 3 1 1

hidden dim linear layers 50 - 74 117 - -
number conv layers 0 0 4 3 0 2
number heads conv - - 107 9 - 159

kernel size - - 7 11 - 7
skip connection - - True True - True

number attention layers 1 0 4 0 0 0
number attention heads 4 - 16 - - -

inferior results. These values are taken from the original paper [5] and present good
values for a variety of classification tasks.

All models are trained using a cosine decay of their learning rate with warm starting.
All models are trained for 5 epochs on the glue datasets and for 10 epochs on the small
glue datasets. Batch size used for training was 32 and the Adam optimizer with betas
(0.9,0.999) and epsilon 1e-08 was used.

4 Results

For our experiments, the 6 glue tasks cola, sst2, mnli, mrpc, rte and qqp are considered,
following common evaluation approaches from literature. As can be seen in Table 2
BERTtuned outperforms BERTbase by a solid margin. On the cola as well as on
the rte task the architecture search seems to have yielded little improvement, but on
the mrpc task the accuracy was improved more significantly by 4%. On average the
accuracy was improved by 0.9%. Larger accuracy improvement seems to correlate to
more extensive changes to the classification head architecture as displayed in Table 1.
The architectures found were using multiple convolutional layers and multiple encoder
blocks, but never more than 2 dense layers in the MLP. All optimal architectures are
adding skip connections if a convolutional layer is added. For all results (thus not in
displayed in Table 1) the base layer was not frozen (freeze Base = False); this indicates,
that the underlying transformer architecture is also adjusted towards the new tasks and
not simply replaced by a new classification head.

In Tables 4 and 3 we see according results of the architecture search for the small

Table 2: Classification accuracies, on the sst2, cola, mrpc, rte, qqp and mnli datasets.
Improvements are marked in bold.

method sst2 cola mrpc mnli rte qqp average

BERTbase 0.925 0.831 0.821 0.829 0.700 0.899 0.833
BERTtuned 0.930 0.831 0.860 0.835 0.700 0.900 0.842
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Table 3: The final classification architectures found for the GLUE small datasets.
method sst2 cola mrpc mnli rte qqp

pooling max [CLS] mean max mean [CLS]
number linear layers 1 1 2 2 1 2

hidden dim linear layers - - 60 172 - 122
number conv layers 0 0 2 2 5 1
number heads conv - - 90 75 14 43

kernel size - - 7 11 5 11
skip connection - - True False True False

number attention layers 1 0 0 0 0 0
number attention heads 8 - - - - -

datasets. Here we see even more significant improvements than on the full datasets.
This can be explained by the overall lower performance of the models and hence larger
margin for improvement. The classification architectures found outperform the baseline
in all cases. In this case the architectures found generally had less parameters to train
than in the case of the full datasets. In all cases either only a convolutional layer,
or an encoder block was added on top of the network, never both. On average the
classification performance was improved by 3% over BERTbase. In comparison to
the full datasets we see that even with fewer training examples it is still possible to
upgrade the performance of BERTbase; thereby, the additional architecture has fewer
additional parameters to avoid overfitting on the training data.

5 Conclusions

In this paper we presented a classification architecture for the BERT sentence embedder
which improves the classification performance on a variety of datasets. In comparison
to other approaches we do not modify the underlying transformer architecture or pro-
vide additional regularization, but rather append more complex network heads to the
BERT network. This is agnostic towards the underlying architecture as well as task and
so is more flexible in improving classification performance among a variety of architec-
tures and tasks than many other approaches.

The exact contribution of the classification architectures found in comparison to a
single layer is of interest and merits further research. Possible further research also
includes other options for the search space of the NAS, as well as different transformer

Table 4: Classification accuracies, for the small datasets. Improvements are marked in
bold.

method sst2 cola mrpc mnli rte qqp average

BERTbase 0.835 0.761 0.733 0.463 0.566 0.736 0.682
BERTtuned 0.869 0.763 0.752 0.529 0.606 0.751 0.712
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based language models.
The source code is available at
https://github.com/TheMody/NASforSentenceEmbeddingHeads,
It is open-source and free (MIT licensed) software.
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