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Abstract. Recurrent neural networks can be used to segment sequences
such as videos, where transitions can be challenging to detect. This paper
benchmarks strategies to better model the transition between states. The
specific task of SL video tokenization is chosen for the evaluation, as it
remains challenging. Tokenizers are the cornerstone of natural language
processing pipelines. There exist powerful tokenizers for text data, but sign
language (SL) video tokenizers are still under development. Benchmarked
strategies prove to be useful to improve SL videos tokenization, but there
is still room for improvement to better model state transitions.

1 Introduction

Recurrent architectures have proven to be effective at processing sequential data.
However, such models suffer from limitations that may prevent them to correctly
model state transitions. Several architectures have been developed to mitigate
those issues. This paper aims to assess their effectiveness, with a specific focus on
sign language tokenization. This task was chosen as it remains challenging and
correct modeling of state transitions would greatly improve the performance for
real-world videos. Section 2 introduces sequential models and strategies to bet-
ter model state transitions, Section 3 discusses the complexity of sign language
tokenization and presents the real-world dataset used in the experiments. Sec-
tion 4 presents and discusses the experiments performed on the retained models.
Finally, Section 5 concludes with future perspectives.

2 Sequential Models and Transition Modeling

Hidden Markov models (HMMs) [1] were among the first successful models for
sequential data. However, they suffer from some limitations. First, they im-
plicitly use a geometric distribution to approximate the duration of each state.
This led to the creation of hidden semi-Markov models (HSMMs) [1, 2], where
each state duration is explicitly modelled with a probability density function
(PDF). A second related limitation is an assumption that state transitions only
depend on the current state. Furthermore, observations are assumed to be con-
ditionally independent, given the current state. These assumptions hinder the
performance of HMMs on complex tasks. This led to the creation of recurrent
neural networks (RNNs) [3] such as the long short-term memory (LSTM) [4].

Despite their achievements, LSTMs may fail to properly model state transi-
tions. In this paper, two architectures that address this limitation are considered:
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(i) the explicit duration recurrent network (EDRN) [5] that aims to better model
state durations by relying on sub-states transitions and (ii) the Mogrifier LSTM
(mLSTM) [6] that tackles the assumption that state transitions only depend on
the current state. They were chosen as they represent the state of the art.

In an EDRN [5], each hidden state has D sub-states. Before moving to the
next hidden state, sub-state transitions must be performed, i.e., transition to the
next hidden state can be performed when the last sub-state is reached. Similar
to an LSTM [4], each sub-state has a duration approximated by a geometric
distribution [5]. Therefore, the duration of a state, decomposed into sub-states,
is approximated by a mixture of geometric distributions and can model a complex
duration distribution [5]. The standard LSTM is a specific case of EDRN.

The Mogrifier LSTM (mLSTM) [6] improves the LSTM expressiveness by
using a context-dependent transition function. This is done by applying a gate
between the input and the hidden state before the LSTM cell for several rounds.
Consequently, the transition function depends on the current hidden state and
the input. This process results in a contextualised representation of the input.

A benchmark of EDRN and mLSTM models against the standard LSTM
architecture is conducted to evaluate the improvement in transition mod-

eling. This benchmark is done in the specific case of sign language tokenization.

3 Sign Language Segmentation

In recent years, significant progress has been made in natural language processing
(NLP). Tokenizers are important parts of NLP pipelines: this mandatory pre-
processing step divides a document into a list of sequential tokens. While it is
easy to find efficient tokenizers for written languages, it is not the case in sign
language (SL). Unlike textual data where splits are based on white spaces or
punctuation symbols, transitions between tokens are harder to detect in SL video
recordings. For example, the end of a sign often overlaps with the beginning
of the next one. The creation of a good SL tokenizer would be a great step
toward SL translation. It could also speed up the currently manual and tedious
annotations of SL video recordings, leading to even larger datasets.

Fig. 1: Examples of frames with corresponding skeletons in LSFB-CONT.
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Models are trained here with the large, real-world LSFB-CONT [7] dataset.
It contains 50 FPS videos of individual people in real-life discussions without
speed or vocabulary constraints. They are extracted from the LSFB Corpus [8],
a large effort since 2012 by researchers at the University of Namur to collect and
annotate LSFB (French Belgian Sign Language) conversations, with the aim to
better understand this sign language. Consequently, it offers a large vocabulary
(more than 6,000 words) with fast signs and short periods between them. One
of the challenges is the imprecise nature of signs. Indeed, the boundaries of signs
are highly dependent on the surrounding signs. The transition between two signs
is called a coarticulation [9]. Conversations are annotated with the start and the
end of all signs along with their labels. In order to avoid issues due to the large
number of different signs and serious imbalance (10 most frequent signs account
for 22% of annotations), we consider two simplified settings where annotations
are replaced by a much smaller set of labels that only take into account the
sign boundaries. In the two-class setting, labels are talking or waiting. In the
three-class setting, labels are talking, coarticulation for the segments of less than
1 second between two signs and waiting for the others.

In this paper, tokenization is performed on the basis of pre-processed upper-
body skeletons. Each skeleton consists of 23 landmarks extracted with Medi-
aPipe [10] (see Figure 1). A model input is thus a sequence with n frames and
23 coordinates (x and y). Landmarks have been linearly interpolated to avoid
discontinuity and coordinates are smoothed using a Savitzky-Golay filter [11]
with a window length of 7 and a polynomial order of 2.

4 Benchmarking Transition Modeling in RNNs

This section evaluates the interest of models that aim to better model transitions,
either through duration modeling (EDRNs) or contextual transitions (mLSTMs).
The LSFB-CONT dataset [7] is used as described in Section 3 to create two
segmentation tasks. Open research directions are highlighted.

4.1 Experimental Setting

Two experiments are carried out with two and three classes, respectively. LSTMs,
EDRNs and mLSTMs are trained with a weighted cross-entropy loss, where
frame weights are the inverse of the frequency of each class (see Table 1 for all
details). The dataset consists of a subset of the LSFB-CONT dataset [7]: the
training set and the test set contain randomly selected videos with, respectively,
3.5M and 2.2M frames. In addition, the signers are different in each set to
avoid overfitting. As sequences have varying dimensions, they are windowed for
batches with a window size of 1500 and a stride of 800.

All the models have 128 features in their hidden states and end with a linear
layer. The optimizer is a stochastic gradient descent with a learning rate of 0.01
and a momentum with a factor of 0.9. The EDRN is trained with 4 sub-states
per hidden state and the Mogrifier LSTM uses 5 rounds [6] (see Table 2).
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classes frames frequency weight

two-class setting
talking 1,836,565 31.72% 3.15
waiting 3,953,383 68.28% 1.46

three-class setting
talking 1,836,565 31.72% 3.15
waiting 3,176,663 54.87% 1.82
coarticulation 776,720 13.41% 7.45

Table 1: Summary of the two experiments with two and three classes.

input features hidden features sub-states rounds
LSTM 46 128
EDRN 46 128 4
mLSTM 46 128 5

Table 2: Configuration of the models used in the two experiments.

4.2 Experimental Results

Table 3 and 4 show the results of the two-class and three-class experiments,
respectively. The metrics include the accuracy, the balanced accuracy and the
recall for each class. In order to better apprehend the behaviour of the models,
Figure 2 shows duration distributions for the signing and coarticulation classes
in the three-class experiment. For reasons of readability, durations greater than
2s are not shown as we focus on the most significant part of the distribution.
Figure 3 shows two examples of mistakes that occur for SL segmentation.

acc. bal. acc. recall
talking waiting

LSTM 81.22 80.53 63.10 97.96

EDRN 82.12 81.06 64.41 97.71
mLSTM 82.03 81.02 64.26 97.80

Table 3: Results of the two-class experiment with the LSFB-CONT dataset.

acc. bal. acc. recall
talking waiting coarticulation

LSTM 73.82 66.19 70.13 97.21 31.24
EDRN 74.41 67.11 72.02 97.32 31.99
mLSTM 77.65 67.78 71.54 95.91 35.89

Table 4: Results of the three-class experiment with the LSFB-CONT dataset.

4.3 Discussion

In the two-class setting, EDRN outperforms both LSTM and mLSTM in terms
of accuracy and balanced accuracy. However, all three models tend to ignore
coarticulation and thus merge signs together as shown by Figure 3a. The three-
class settings aims to mitigate this issue with the additional coarticulation class
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Fig. 2: Comparison of duration distributions in the dataset (black) and in the
segmentation (white), for signing (first row) and coarticulation (second row) in
the three-class experiment. From left to right: LSTM, EDRN and mLSTM.

that reflect how signers move from one sign to the next. In that case, mLSTM
performs better in terms of accuracy and has a better recall for transition. EDRN
has a better recall for other classes. In both settings, EDRNs and mLSTMs
outperform LSTMs, showing the effect of better transitions modeling .

Figure 2 shows that the duration distributions are better modeled by the
EDRN and the mLSTM. In particular, mLSTM is more accurate for the coar-

ticulation class, with most of the probability mass put in the left part of the
distribution and a smaller distribution tail. Yet, there is still room for improve-
ment. The mLSTM model tends to produce very short signs as shown by the
segmentation example in Figure 3b.

The EDRN also favours short signs but the problem is less important. How-
ever, the coarticulation duration distribution has a rather heavy tail in Figure 2,
i.e., predicted transitions are too long. Notice that those observations are con-
sistent with the higher transition recall and higher balanced accuracy measured
for the mLSTM.

(a) Too long predicted signs with an
LSTM in the two-class experiment.

(b) Too short predicted signs with an
mLSTM in the three-class experiment.

Fig. 3: Examples of target (top) and predicted (bottom) segmentation. Black
segments correspond to talking, white space indicates waiting or coarticulation.
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5 Conclusion

In this paper, two experiments are carried out on the real-world task of sign
language tokenization. Three RNN models are compared, which differ in the
modeling of state durations and state transitions: LSTM, EDRN and mLSTM.

The first experiment highlights the difficulty of the prediction of coarticula-
tion between signs. Both the EDRN and the mLSTM outperform the LSTM
in the second experiment. mLSTM is more accurate, but it predicts too short
signs. The EDRN is more accurate than the LSTM and predicts longer signs
compared to the mLSTM. However, predicted coarticulations are too long.

This paper demonstrates the interest of developing better models of state
transitions and state durations for RNNs through the case of SL tokenization.
However, it also demonstrates that there is room for improvement. Future work
includes proposing new powerful models in that direction. To the best of our
knowledge, there exist only few works [12, 13], that tackle SL tokenization, but
they do not focus on the problem of state transitions and durations.
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