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Abstract. The recently introduced weakly disentangled representations
proposed to relax some constraints of the previous definitions of disentan-
glement, in exchange for more flexibility. However, at the moment, weak
disentanglement can only be achieved by increasing the amount of super-
vision as the number of factors of variations of the data increase. In this
paper, we introduce modular representations for weak disentanglement, a
novel method that allows to keep the amount of supervised information
constant with respect the number of generative factors. The experiments
shows that models using modular representations can increase their per-
formance with respect to previous work without the need of additional
supervision.

1 Introduction

Intuitively speaking, a disentangled representation can be defined as a (usually
low-dimensional) encoding of z of a data sample x, where distinct components
of z are responsible for encoding a specific generative factor of the data. Despite
the different attempts in the literature, coming up with a formal definition of
what disentanglement actually is has proven more difficult than expected [1].
Several works just assume that a disentangled representation is a representation
in which a single latent dimension responsible for encoding a single generative
factor of the data. This definition, while easy to formalise in a mathematical
way, has resulted to be too restrictive in general. Recently, [2] relaxed this def-
inition by introducing weak disentangled representation, where each generative
factor can be encoded in a different region of the latent space without imposing
additional limitations on their dimensionality. Despite the advantages of this
new approach, the initial implementation of [2] suffered from the fact that the
number of annotations required for achieving weak disentanglement grew very
quickly in the number of generative factors.

In this paper, we address this limitation by introducing modular representa-
tions for weak disentanglement. In a modular representation, each partition of
the latent space encodes the respective generative factor in a different adaptive
prior distribution, independent from the others. We show that models that use
modular representations are able to accurately perform controlled manipulations
of the learned generative factors of the data without the need of increasing the
amount of supervised information.

∗The work has been partially supported by the EU H2020 TAILOR project (n.952215).
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Fig. 1: Overview of the model’s architecture.

2 Related Works

Early methods for disentanglement are mainly concerned with increasing prior
regularisation of the loss function [3, 4]. Another line of work [5, 6, 7] penalises
different terms of the same loss function in various ways. They define disentan-
glement using simple mathematical notions (e.g. total correlation of the latent
dimensions). After the results of [8], showing that pure unsupervised disentan-
glement is in general impossible to achieve, many works started using various
degrees of supervised information [9], either in the form of complete supervision
on a small subset of training data [10] or partial annotations on a subset of gen-
erative factors [11]. Some works use additional classifier networks on the latent
space in order to separate different parts of the latent codes. While useful, these
method are not practical when multiple factors of variations need to be disen-
tangled at the same time. Other methods for introducing implicit supervision
involve dropping the i.i.d. assumption by leveraging relational information be-
tween the samples. The relational information can be group-wise [12], pair-wise
[13], or structural [14]. Recently, [2] introduced the concept of weak disentan-
glement, overcoming many of the above limitations. However, their method
requires an increasing amount of supervision when the number of generative
factors increases.

3 Modular Representations for Weak Disentanglement

A general overview of the model’s architecture is illustrated in Fig. 1. We
frame our representation learning problem as an auto-encoding task. Given a
data sample x ∼ p(x), we want to output a faithful reconstruction x̂. The
encoder network qϕ(z|x), parameterised by ϕ, takes a data sample x as input
and produces G latent codes, where G is the number of generative factors of
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the data. Conversely, the decoder network pθ(x|z1, z2, ..., zG), parameterised by
θ, combines these partial latent codes to reconstruct the initial input. The re-
sulting Modular AutoEncoder (M-AE) model is then trained using the following
maximum likelihood objective:

max
θ,ϕ

LM−AE(x, θ, ϕ) = Eqϕ(z|x) [log pθ(x|z)]− β
G∑

gi=1

KL (qϕ(zgi)||p(zgi)). (1)

The first term of Eq.1 is directly responsible for ensuring a good reconstruction
of the original input x. The second term, a sum of KL divergences between
the aggregate posteriors qϕ(zi) and the priors p(zi), encourages each partition
of the latent space zi to follow a specific prior distribution. These priors are
directly inspired from the data and are enforced in an adversarial way, similar to
GANs [15]. In particular, this term is optimised via an additional discriminator
network dψ(z), parameterised by λ:

min
ϕ

max
λ

LDISC(z, ϕ, λ) = Eqϕ(z)[log dλ(z)] + Ep(z)[log(1− dλ(z))]. (2)

This adversarial loss allows us to choose the most suitable prior distribution
for each partition. In particular, since our goal is to identify all possible real-
world instances of a particular value of a generative factor gi, we model each

p(zi) as a mixture of normal distributions: p(zgi) = 1
Vgi

∑Vgi
v=1 N (µgi,v,Σ

2
gi,v),

where Vgi is the number of values that factor gi can take. We build a different
mixture for each partition. Specifically, the parameters µ and Σ2 of each prior’s
components are empirically estimated using a small subset of annotated samples:
∀i, v.µi,v = E [{z}gi=v] , Σ2

i,v = Var [{z}gi=v], where {z}gi=v denotes the subset
of (encoded) supervised samples where the factor gi takes value v. Since each
latent partition encodes a different generative factor, when can re-use the same
annotated samples for computing the different parts of the prior. The second
part of the model is the Relational Learner (ReL). During training, the ReL
learns how to perform controlled changes to specific properties of the data sample
by leveraging the representations learned by the M-AE. The ReL is composed
of the relational sub-network rψ(z|zrel, zin), parameterised by ψ. Assuming that
the relation to be learned affects only the value of a single factor of variations,
the relational objective becomes the following:

max
ψ

LReL(z, f, ψ) = log p
(
zf(gi)

)∑
j ̸=i

log p
(
zgj

)
(3)

where z = [zg1 . . . , zgi , . . . zgG ] ∼ rψ(z|zrel, zin) is the output of the relational
learner. The function f defines the “connections” between the prior components
that correspond to a specific relation. This can be easily extended for losses that
affect multiple factors. This loss function encourages the partition affected by
the relation to match the prior of the new value of that factor, while the other
partitions remain unchanged. The correspondence between components of the
prior and generative factor values is made possible by the representation learned
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by the M-AE. Finally, training is done end-to-end by combining the previous
losses L = LM−AE(x, θ, ϕ, λ) + LReL(z, ψ, f),

4 Experiments1

Datasets. We consider two disentanglement tasks based on the dSprites [16]
and Shapes3D [17] datasets, containing respectively 2D and 3D images of shapes
that express different combinations of generative factors (shape, x/y-position,
scale, and orientation for dSprites; floor-color, shape-color, background
-color, and orientation for Shapes3D). We consider all the relations that
affect the change of a single generative factor of the data (e.g. move-left,

move-right, +hue, change-shape, etc.). No restriction is imposed on the
nuisance factors, that are able to vary freely when applying relations on the latent
codes. For each dataset, we construct three versions of increasing complexity,
characterised by different choices of relevant and nuisance factors.

Training Setting. The M-AE encoder and decoder are implemented as a CNN,
while the prior’s Discriminator and the ReL are 3-layers MLP with 1024 units
each. We use 8-dimensional latent codes for each generative factors, for a maxi-
mum size of the latent space of Nz = 32. All tasks use a batch size of 1024 for
the M-AE and 128 for the ReL. The parameter β of Eq. 1 is set to 0.1. The
optimiser used for all modules is Adam with a learning rate of 10−4. Training
is divided in two stages. In the first stage, called warmup, only the M-AE is
trained. The prior is set to ∀i.p(zi) ∼ Uniform(−1, 1). After 1000 epochs we
enter the full training stage, where the prior of each latent partition is set to the
adaptive prior described in Sec. 3. We construct a different prior for each gen-
erative factor, leveraging the annotations of the supervised subset. At the same
time, the training of the ReL begins: the input data samples are constructed as
triples (zin, zrel, zout), where zin and zout are respectively the encoded input and
output samples for the relation zrel. The latent codes are sampled from their
respective components in the latent space. The concurrent training of the M-
AE and the ReL is carried on during the full training phase for 5000 additional
epochs.

Latent Codes Manipulation. In this first set of experiments, we are interested
to analyse how well suited are the modular representations to perform controlled
changes of generative factors in the latent codes. We compute the relation ac-
curacy of the ReL by first sampling a latent code from the prior, then we apply
a random relation and check the outcome. The results are reported in Table.
1, compared with the previous work of [2]. The results show that modular rep-
resentations are beneficial for the accuracy of the ReL, while not requiring an
increasing amount of supervised data when the number of factor value combi-
nations increases.

1All the code of the models and the experiments is publicly available:
https://github.com/Andrea-V/Weak-Disentanglement .
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Table 1: Relational accuracy of the ReL. τ is the number of supervised samples
used during training.

Previous Work [2] This Work

Factor Combinations Accuracy τ Accuracy τ

dSprites.v2 27 0.592 270 0.724 1000
dSprites.v3 135 0.571 1350 0.751 1000
dSprites.v4 1080 0.491 10800 0.685 1000

Shapes3D.v2 40 0.275 400 0.690 1000
Shapes3D.v3 120 0.220 1200 0.653 1000
Shapes3D.v5 12000 0.124 12000 0.633 1000

Table 2: Disentanglement scores of latent representations. Higher is better.

dSprites Shapes3D

DCI MIG SAP DCI MIG SAP

Locatello et al. [10] 0.533 0.01 0.01 0.48 0.05 0.08
Gabbay et al. [11] 0.8366 0.14 0.57 1.0 0.3 1.0
Valenti et al. [2] 0.9543 0.994 0.7728 0.6921 0.6897 0.5007
Ours 0.9732 0.9721 0.7877 0.7056 0.6919 0.5511

Disentanglement Scores. We compare the SAP [18], DCI [6] and MIG [19]
disentanglement scores against several models of the literature. Following the
approach of [2], we convert our modular representations into its corresponding
generative factor values before computing the scores. This step can be done at
no additional computational cost. The results are reported in Table 2 showing
that modular representations have a beneficial impact to all the scores, especially
considering the challenging SAP score. This is a strong sign that the modular
separation of weakly disentangled representations is indeed able to improve the
disentanglement performance of generative models.

5 Conclusion

In this paper, we introduced a novel framework for learning modular weakly
disentangled representations. Modular representations encode each generative
factor into a separate partition of the latent space, thus overcoming the need of
requiring additional supervision when the number of value combinations of the
generative factors increases. The experiments show that modular representations
allow to perform controlled manipulations to selected generative factors with
high accuracy. This, in turn, results in high disentanglement scores. In the
future, we wish to further enhance the expressivity of our methods by finding
ways to encode continuous generative factors in a weakly disentangled way.
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