
Size Scaling in Self-Play Reinforcement Learning

Oren Neumann and Claudius Gros

Institute for Theoretical Physics
Goethe University Frankfurt
Frankfurt am Main, Germany

Abstract. Performance scaling laws with resources are heavily studied in
supervised deep learning models but not in reinforcement learning. We ex-
amine the scaling of the AlphaZero [1] algorithm’s performance with model
size by training agents on three competitive two-player games, Connect
Four, Oware and Pentago. We find that performance, in the form of the
Elo rating, scales logarithmically with the number of free neural network
parameters, a trend consistent across games and when using deeper neural
networks. This leads to a universal expression for the average match out-
come which depends only on the ratio of sizes between opponents, which
is supported by an agnostic rating method.

1 Introduction

AlphaZero (αZ) [1] is the extension of AlphaGo Zero, which attained human
expert level performance at playing the game of Go. Remarkably, αZ reached
superhuman level for three different games (Go, Chess and Shogi) without any
external knowledge by learning purely from self-play games. The algorithm,
comprised of a tree search algorithm guided by a neural network (NN), received
significant attention since its publication and several open source reconstructions
of it have been released, most notably the one available by DeepMind’s OpenSpiel
[2]. While the original model required massive amounts of computation resources
to train, training the algorithm on simpler games than the original three is
possible on more modest hardware. However, performance scaling analysis for
this framework has been lacking.

Scaling laws have received significant focus in recent years [3, 4, 5], in an
effort to optimize the costs of training deep learning models, which can be in the
millions of dollars for state-of-the-art models. Efforts focus mostly on language
and computer vision tasks where training data is abundant and models are of
proportional sizes. In contrast, reinforcement learning models tend to generate
their own training data, making them less suitable for large scale optimization
efforts.

In order to increase our understanding of performance scaling in reinforce-
ment learning, we tracked the performance of αZ across different games and
found a common scaling behavior for all cases considered, namely that the Elo
rating scales logarithmically with the number of parameters in the NN, provided
training is not bottlenecked by other factors. This behavior persists even when
using an alternative rating scheme that does not contain the built-in biases of
classical Elo rating.
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2 Method

2.1 The AlphaZero algorithm

We trained agents with the αZ algorithm, which uses a combination of a Monte
Carlo tree search (MCTS) guided by a deep NN. The agents are trained with
reinforcement learning on self generated data, without using a priori knowledge
of the game. The NN receives as input the current state s of the game and
produces an output f(s) that consists of a policy vector p⃗ and a value prediction
v:

f(s) = (p⃗, v) , (1)

where v ∈ [−1, 1] is equivalent to the expected final outcome of the game when
starting from the current position. The policy p⃗ is a probability distribution
over available actions, with components pa = Pr(a|s) for each action a, that is
used within αZ to guide the MCTS. The NN is trained on game states that were
visited in previous self-play, using the loss function:

l = (z − v)2 − π⃗ log p⃗ . (2)

Here z is the recorded game outcome and π⃗ is an improved policy vector gener-
ated by the MCTS. During a game, agents use the search tree for selecting their
moves. For details see [1, 6].

2.2 Model training

We trained agents to play 2-player games using OpenSpiel [2], a collection of
algorithms and environments for applying reinforcement learning to turn-based
games. Training was done with OpenSpiel’s implementation of the αZ algorithm
together with various board game implementations. All agents used a multilayer
perceptron (MLP) NN with two hidden layers (also three for Connect Four),
coupled with a MCTS that probed a fixed number of 300 new states per turn.

Since our work focuses on general scaling phenomena, we avoided hyperpa-
rameter tuning as much as possible, by keeping the same hyperparamters used in
the Python αZ example available on OpenSpiel. Only the following hyperparam-
eters were changed, to allow for significant training within our compute budget:
Replay buffer reuse was set to 10, NN model type to MLP and the checkpoint
frequency to 10. The only parameters that varied between game types were the
temperature drop and number of training steps: Temperature drop was set to
15 for Oware and to 5 for all other games, due to game length. The number of
training steps was set to 2× 103 for all cases except Connect Four with 3 layers,
where we used 4 × 103 steps. Note that a training step occurs once 6.5 × 103

new game states are accumulated via self-play. All graphs were generated by
averaging over 4 separately trained instances for each NN size.

2.3 Player rating

In order to measure agent performance we made use of the Elo rating system
[7], a rating system for zero-sum games that was invented for chess and gained
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popularity in numerous games. The expected score, the probability for player A
to beat player B, is given by:

PA =
1

1 + 10(RB−RA)/400
, (3)

where RA, RB are the Elo ratings of both players. These ratings are found by
repeatedly matching players together and adjusting their ratings to fit the game
outcomes.

Since Elo rating contains underlying assumptions about the form of the prob-
ability function, we used as well PolyRank [8], a method that simultaneously
evaluates player rating and the probability distribution function. PolyRank
applies polynomial regression to paired comparison data to estimate the com-
parison function via it’s inverse, with convergence guaranteed for enough data
and a large enough polynomial degree for the function estimation. We used
polynomials of degree 9 for all cases.

3 Related work

Power law scaling of performance with available resources has been observed
before in deep learning models. [3] found power law scaling for test loss with the
number of model parameters, as well as with dataset size and training time, when
training language models, and [5] found that the error of ResNets on ImageNet
scales as a power law with FLOPs, in the low FLOPs regime.

Performance scaling in reinforcement learning, and specifically for the αZ
algorithm, has not received comparable attention. [6] investigated the perfor-
mance of αZ for a 2-player knapsack problem and found logarithmic Elo scaling
with model size. [9] used a variant of the algorithm for continuous action spaces
and looked at the scaling of performance with the number of MCTS steps per
move. [10] looked into the effects of different hyperparameters on training loss
and Elo rating of αZ when learning to play the game Othello. To our knowledge
no extensive study has been performed on the scaling of performance with model
size of αZ or its predecessors AlphaGo and AlphaGo Zero.

4 Results

4.1 Elo rating

Our main results are presented in figure 1. As benchmarks, three games where
chosen: Connect Four, Oware and Pentago. We trained AlphaZero models with
fixed hyperparameters on all games, keeping a fixed MLP neural network ar-
chitecture with two hidden layers (three layers as well for Connect Four) and
varying only the width of the hidden layers. Four agents of identical architecture
were used for each NN size, each trained only by self play and without access to
external information. After training for a fixed number of training steps, each
agent was matched against all other agents, which produced Elo ratings for the
entire agent pool. Figure 1 shows the average Elo ratings of each NN size group,
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(a) Connect Four (2 hidden (b) Connect Four (3 hidden
layers). γ = 0.352. layers). γ = 0.428.

(c) Oware. γ = 0.452. (d) Pentago. γ = 0.648.

Fig. 1: Elo rating scales logarithmically with model size across different games
(linear fit in logscale). Shaded area shows range of ratings among trained in-
stances. The performance scaling exponent γ is cited for each case.

together with the range of ratings. A logarithmic trend is clearly visible in the
Elo rating of the agents with respect to the number of free NN parameters. This
implies a specific relation between the number of NN parameters used and the
average outcome of the respective games, namely

PA =
nγ
A

nγ
A + nγ

B

=
1

1 + (nB/nA)γ
, (4)

where nA, nB are the numbers of parameters of agents A and B and PA is
the probability of agent A to win a match between them. The factor γ changes
between games. We chose a fixed number of training steps for all agents, ensuring
that it is long enough for the largest models to converge and that training is not
bottlenecked by time. All other training hyperparameters were fixed, in order
to ensure that the observed logarithmic trend represents solely the effects of a
model size bottleneck.
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(a) Connect Four (b) Oware (c) Pentago

Fig. 2: PolyRank [8] rating scaling with model size. Shaded area show the range
of ratings among trained instances.

Relation (4), which seems to be universal for zero-sum open-information
games, implies that the statistics of game outcomes is determined under a model
size bottleneck only by the ratio of NN sizes nA/nB , together with the factor γ,
which is specific to the type of game played.

Two interesting behaviors result from this fact in different regimes: When
nA ≪ nB , the winning probability for agent A increases as a power of the
relative resources used, here proportional to the ratio nA/nB of the numbers of
parameters. In the case that both agents have NN sizes of a similar order of
magnitude, scaling up the size relative to one’s opponent, as nA = (1+α)nB , will
change the winning probability linearly when α ≪ 1, as PA = 1/(1+(1+α)−γ) ≈
(1 + 0.5αγ)/2. This linear increase in winning probability is independent of nA

and nB , providing a constant reward to a linear increase in model size regardless
of the scale of network sizes.

It is worth noting that the logarithmic trend observed in figure 1 will even-
tually break for large models if the hyperparameters controlling learning are not
adjusted with increasing model sizes, or when optimal play is reached for games
like Connect Four, for which optimal strategies are known to exist. For this
reason we fixed the hyperparameters, and specifically the number of training
steps, such that training of the largest agents considered in our study converged.
Training is therefore not bottlenecked by hyperparameter other than the number
of NN parameters.

4.2 PolyRank rating

While Elo rating is the universal go-to rating system for assessing players of 2-
player games, it contains assumptions that might not fit the actual data. Formula
(3) can be reduced to the Bradley-Terry model [11]:

PA =
µA

µA + µB
, (5)

where µi is a positive real-valued score assigned to player i. Using Elo rating
one enforces the assignment of such a score to each player, for which we find the
functional dependency µi = nγ

i . Although figure 1 shows a surprisingly good
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fit of this probability model to our data, it is possible that the true underlying
probability model is different. For this reason we used PolyRank [8] to rate our
trained agents, a rating method that fits a probability model to the data while
simultaneously rating the pool of agents. Figure 2 contains the resulting rating
for all three games (all with NN models with 2 hidden layers). All three games
still show a linear trend in logscale, albeit with a slight flattening for larger
models, especially in the case of Connect Four.

5 Conclusion

We observed a clear scaling law for the AlphaZero algorithm which appears
across different games and neural network (NN) depths. We showed that the
logarithmic scaling of Elo ratings with NN size produces a simple expression for
game outcome probabilities which depend solely on the ratio of NN sizes between
opponents. An equivalent functionality was observed when using a rating system
free from the bias of Elo rating. Our results suggest the existence of universal
scaling laws in reinforcement learning and adversarial games, an area of research
that currently lacks attention compared to the massive efforts to quantify perfor-
mance scaling in NLP and computer vision. We hope these findings encourage
others to use available open source resources to analyze hyperparameter tuning
in reinforcement learning.
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