
Pruning Weightless Neural Networks

Zachary Susskind1, Alan T. L. Bacellar2, Aman Arora1, Luis A. Q. Villon2,
Renan Mendanha2, Leandro S. de Araújo3, Diego L. C. Dutra2,

Priscila M. V. Lima2, Felipe M. G. França2,4, Igor D. S. Miranda5,
Mauricio Breternitz Jr.6, and Lizy K. John1 ∗

1- UT Austin, Austin, USA, 2- UFRJ, Rio de Janeiro, Brazil,
3- UFF, Niterói, Brazil, 4- IT-Porto, Portugal

5- UFRB, Cruz das Almas, Brazil, 6- ISCTE, Lisbon, Portugal,

Abstract. Weightless neural networks (WNNs) are a type of machine
learning model which perform prediction using lookup tables (LUTs) in-
stead of arithmetic operations. Recent advancements in WNNs have re-
duced model sizes and improved accuracies, reducing the gap in accuracy
with deep neural networks (DNNs). Modern DNNs leverage “pruning”
techniques to reduce model size, but this has not previously been explored
for WNNs. We propose a WNN pruning strategy based on identifying
and culling the LUTs which contribute least to overall model accuracy.
We demonstrate an average 40% reduction in model size with at most 1%
reduction in accuracy.

1 Introduction

Weightless neural networks (WNNs) are a class of neural model which use
lookup-based neurons called RAM nodes to perform computation. Inputs to
a RAM node are binary values. These inputs are concatenated to form an
address, and the node outputs the binary value stored at that location in its
internal lookup table [1]. The key strength of WNNs is the ability of nodes to
learn non-linear functions of their inputs, which is not possible for individual
neurons in a conventional deep neural network (DNN). In principle, this allows
for accurate models with very few RAM nodes.

WNNs have historically suffered from impractical memory requirements. The
size of a RAM node grows exponentially with its number of inputs, meaning it
is usually impossible to provide all inputs to a single node. The conventional
solution to this is to instead partition the inputs between many smaller RAM
nodes. This makes it feasible to train WNNs for non-trivial applications, but still
requires a considerable amount of memory for an accurate model. More recent
work [2] recognized that the contents of these RAM nodes are highly sparse, and
replaced their lookup tables with hash-based Bloom filters. While this technique
reduces the size of the RAM nodes, it does not reduce their number, and the
need to compute hash functions adds a new source of computational overhead.

∗This research was supported in part by (a) Semiconductor Research Corporation (SRC)
Task 3015.001/3016.001; (b) CAPES - Brazil - Finance Code 001; (c) CNPq - Brazil; (d)
Fundação para a Ciência e a Tecnologia, I.P. (FCT): ISTAR Projects: UIDB/04466/2020
and UIDP/04466/2020, and; (e) FCT/COMPETE/FEDER, FCT/CMU IT Project FLOYD:
POCI-01-0247-FEDER-045912. Any opinions, findings, conclusions or recommendations are
those of the authors and not of the funding agencies.

37

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1.
Available from http://www.i6doc.com/en/.

In DNNs, pruning techniques are used to eliminate unimportant weights and
connections. This process can greatly decrease the size and complexity of models
with little to no penalty to accuracy [3]. In this paper, we propose a pruning
mechanism for WNNs based on identifying and eliminating the RAM nodes
which contribute the least to overall model accuracy. To our knowledge, this
represents the first effort to prune WNNs. We report results on the MNIST,
FashionMNIST, Letter, and Satimage datasets, and find that a 24-70% model
size reduction is possible with ≤ 1% accuracy penalty and a 49-90% reduction
with ≤ 3% penalty.

2 Background

WiSARD (Wilkie, Stoneham and Aleksander’s Recognition Device) [4]
was the first WNN to achieve commercial success, and is the baseline many sub-
sequent models are built on. WiSARD is intended for classification tasks. A
WiSARD model contains submodels, referred to as discriminators, for each out-
put class, which are in turn composed of RAM nodes. Inputs to the RAM
nodes are assigned using a random mapping, which is shared between discrimi-
nators. During inference, the outputs of the RAM nodes in each discriminator
are summed to produce a response value, and the index of the discriminator
with the strongest response is taken as the predicted class.

Bloom Filters: A Bloom filter is a hash-based data structure for approximate
set membership composed of a lookup table L and independent hash functions
{h1, . . . , hk}. To test whether a value x is in the Bloom filter, the AND reduction
of entries at hashed addresses

∧
{L[h1(x)], . . . , L[hk(x)]} is computed. Bloom

Filters were previously used to replace LUTs in RAM nodes in Bloom WiS-
ARD [2], and greatly reduced model size with a minimal impact to accuracy.
An example of the Bloom WiSARD model and its inference behavior is shown
in Figure 1.

RAM1

RAM2

RAM3

RAM4

Address

Random

mapping

Bloom Filter

r

Discriminator0

Discriminator1

Discriminator9

r0

r1

r9

response

Discriminator

Input image

RAM0
h1(x)

h2(x)

h1(x)

h2(x)

h1(x)

h2(x)

h1(x)

h2(x)

RAM1

RAM2

RAM3

Fig. 1: A depiction of the Bloom WiSARD [2] WNN model. In this example,
the input image contains “1”, and the corresponding discriminator produces the
strongest response.

Thermometer Encoding: Traditionally, inputs to WiSARD are binarized by
comparing them against their mean value in the training data. A thermometer
encoding is a multi-bit unary encoding which instead compares values against a

38

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1.
Available from http://www.i6doc.com/en/.

series of increasing thresholds [5]. Thermometer encoding gives increased reso-
lution and accuracy at the cost of model size.

Feedback-based Training: WiSARD is conventionally trained using a one-
shot learning rule. However, we need to incorporate feedback to enable fine-
tuning after pruning. The key challenge is that Bloom filter entries are binary,
which makes them incompatible with traditional gradient-based methods. We
use a training rule based on the one described in [6] for binary neural networks.
We treat filter entries as floating point values between -1 and 1 and binarize
them using the unit step function. During backpropagation, gradients bypass
this unit step, and are therefore not canceled. This technique, known as the
straight-through estimator, has not previously been used to train WNNs.

Ensembles: An ensemble combines multiple weak classifiers in order to create
a single stronger classifier. Ensembles are frequently used in contexts such as
gradient boosting [7]. We have found that ensembles of very small WiSARD
models are both smaller and more accurate than singular larger WiSARD models
when trained using the feedback-based technique.

3 Pruning Methodology

Non-Uniform Pruning Uniform Pruning

Node 0 Node 1 Node 2 Node 3 Node 0 Node 1 Node 2 Node 3 Node 0 Node 1 Node 2 Node 3

No Pruning

Fig. 2: Weightless models, showing (a) No pruning, (b) Non-uniform pruning,
where different RAM nodes are pruned in different discriminators, and (c) Uni-
form pruning, where the same RAM nodes are pruned in all discriminators

We implement and train WiSARD models using all enhancements described
in Section 2, including Bloom filters, thermometer encoding, model ensembles,
and the feedback-based learning rule. Pruning is performed as a post-training
step. As shown in Figure 2, we consider two different variants of pruning: a
non-uniform technique, where pruned nodes in different discriminators may be
at different indices, and a uniform technique, where the indices of pruned RAM
nodes are shared between discriminators.

The first step in the pruning process is to identify how much each RAM node
contributes to producing the correct output. For node j in discriminator i, the
response score sij is given by:

sij =
∑

d∈D

Nij [d](Mδ(l[d]− i)− 1)

Here, D is a dataset with M classes, d is a sample within D, Nij [d] is the
output of the RAM node, l[d] is the correct label for d, and δ is the Kronecker

39

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1.
Available from http://www.i6doc.com/en/.

delta function.
Once scores have been computed for all nodes in the model using the train-

ing data, a fixed fraction of the RAM nodes with the lowest scores are culled,
replacing them with a constant 0 value. This has the side effect of lowering the
maximum responses of the discriminators. Furthermore, the impacts on the re-
sponses of different discriminators may be unequal. For instance, a node which
always outputs 0 and a node which always outputs 1 will have identical scores
(assuming an equal number of samples in each class), but clearly have different
contributions towards their discriminators’ responses. To compensate for this,
we learn a set of biases, which are added to the outputs of each discriminator.

Lastly, we perform a fine-tuning training pass using the pruned model and
the feedback-based learning rule. In practice, we find that this can recover
a significant portion of the accuracy that was lost from pruning, particularly
when a higher proportion of nodes are culled.

Train Model
Compute

Node Scores

Eliminate Low

Scorers
Learn Biases

Fine-Tune

Model

Trained

Model

Final

Model

Fig. 3: Summary of the pruning process for a trained model

The pruning process as a whole is summarized in Figure 3. Since we replace
lookup tables with Bloom filters in our model, we also need to consider the
impact of pruning on the number of hash function computations required. All
discriminators in a model have the same input mapping, so by reusing the same
set of hash functions between Bloom filters, we only need to compute hashes for
the first discriminator, and can reuse them elsewhere. However, it is possible
that the filter at some index j may be pruned in the first discriminator, but not
in some other discriminator in the model. In this case, it is still necessary to
compute the hash functions for this filter. To avoid this, the uniform pruning
technique (shown in Figure 2) culls filters at the same indices in each discrim-
inator. The filters culled are those which have the lowest maximum response
score in any discriminator.

4 Experimental Results

We use the MNIST [8] dataset as an illustrative example to show the impact of
pruning in WNNs. Our baseline weightless model is an ensemble of 6 submodels
with a total parameter size of 373 KiB and test accuracy of 98.49%. We prune
this model using both the uniform and non-uniform methods in increments of
10% up to 90%, and then increments of 2% up to 98%. The results of this
pruning sweep are shown in Figure 4.

Up to a 70% pruning ratio, both methods achieve approximately equal post-
pruning accuracies, with <1% degradation. Past this point, both methods begin
to substantially degrade accuracy, with uniform pruning having a far larger
impact. The implication of this result is that there is a relatively small set of

40

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1.
Available from http://www.i6doc.com/en/.

Fig. 4: Results of pruning a weightless model for the MNIST dataset by 0-98%.
When using uniform pruning, model size and hash computations follow identical
curves.

RAM nodes which are critical for model accuracy, but this set is not identical
for all discriminators.

The number of hash function computations required for non-uniformly pruned
models is not significantly improved for pruning ratios below 70%, and even at
a 98% pruning ratio the reduction is only 82%. On the other hand, the number
of hash functions required for uniformly-pruned models is directly tied to the
pruning ratio, as expected.

Dataset
Bloom WiSARD [2] Our Unpruned Conservative Pruning Aggressive Pruning
Size Accuracy Size Accuracy Size Accuracy Size Accuracy
(KiB) (KiB) (KiB) (KiB)

MNIST 819 91.5% 373 98.49% 112 97.91% 38.1 95.99%
FashionMNIST - - 2786 89.20% 1533 88.62% 412 86.61%

Letter 91.3 84.8% 30.9 93.13% 23.6 92.27% 15.8 90.28%
Satimage 12.7 85.1% 5.53 88.30% 3.66 87.30% 1.17 85.35%

Table 1: Pruning results for studied datasets. We identify pruning ratios with
conservative (≤ 1%) and aggressive (≤ 3%) accuracy penalties.

We also investigated uniform pruning with the FashionMNIST [9], Letter [10],
and Satimage [11] datasets. Results are shown in Table 1. We do not present
non-uniform results for these datasets, since, as our results on MNIST show,
it does not provide superior accuracy except at very high ratios, and the over-
head in hash computations is significant. MNIST, Letter, and Satimage were
used in Bloom WiSARD [2]; our baseline (unpruned) models are both smaller
and more accurate. FashionMNIST is an image classification dataset which is

41

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1.
Available from http://www.i6doc.com/en/.

structurally similar to MNIST (28x28 greyscale images) but considerably more
challenging [9]. Uniform pruning achieves an average (geometric mean) pruning
ratio of 40% with ≤ 1% decreased accuracy and 74% with a ≤ 3% decrease.

5 Conclusion

In this work, we propose a pruning technique for weightless neural networks.
Our models are an extension of memory-efficient prior work [2], which reduced
the size of the RAM nodes in a model, but not their number. Pruning entire
RAM nodes allows us to further reduce model sizes at a reasonable impact to
accuracy. Our experiments across four datasets show that we can reduce model
size by an average of 40% with at most a 1% reduction in accuracy. Potential
avenues for future work include reducing the sizes of the remaining Bloom filters
after pruning, eliminating entire submodels from within an ensemble (a method
proposed but not explored in [12]), and exploring the robustness of pruned mod-
els to random errors. This work is a further step toward enabling WNNs in
memory-constrained environments such as embedded devices.

References

[1] Igor Aleksander, Massimo De Gregorio, Felipe França, Priscila Lima, and Helen Mor-
ton. A brief introduction to weightless neural systems. In 17th European Symposium on
Artificial Neural Networks (ESANN), pages 299–305, 04 2009.

[2] Leandro Santiago, Leticia Verona, Fabio Rangel, Fabricio Firmino, Daniel S Menasché,
Wouter Caarls, Mauricio Breternitz Jr, Sandip Kundu, Priscila MV Lima, and Felipe MG
França. Weightless neural networks as memory segmented bloom filters. Neurocomputing,
416:292–304, 2020.

[3] Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What
is the state of neural network pruning? In I. Dhillon, D. Papailiopoulos, and V. Sze,
editors, Proceedings of Machine Learning and Systems, volume 2, pages 129–146, 2020.

[4] I. Aleksander, W.V. Thomas, and P.A. Bowden. WISARD·a radical step forward in image
recognition. Sensor Review, 4(3):120–124, 1984.

[5] Andressa Kappaun, Karine Camargo, Fabio Rangel, Fabŕıcio Firmino, Priscila
Machado Vieira Lima, and Jonice Oliveira. Evaluating binary encoding techniques for
wisard. In 2016 5th Brazilian Conference on Intelligent Systems (BRACIS), pages 103–
108, 2016.

[6] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio.
Binarized neural networks: Training deep neural networks with weights and activations
constrained to +1 or -1, 2016.

[7] Thomas G. Dietterich. Ensemble methods in machine learning. In Multiple Classifier
Systems, pages 1–15, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

[8] Yann LeCun and Corinna Cortes. MNIST handwritten digit database.
http://yann.lecun.com/exdb/mnist/, 2010.

[9] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms, 2017.

[10] David J. Slate. Letter recognition data set. UCI Machine Learning Repository.

[11] Ashwin Srinivasan. Statlog (landsat satellite) data set. UCI Machine Learning Repository.

[12] Leopoldo A.D. Lusquino Filho, Luiz F.R. Oliveira, Aluizio Lima Filho, Gabriel P. Guarisa,
Lucca M. Felix, Priscila M.V. Lima, and Felipe M.G. França. Extending the weightless
wisard classifier for regression. Neurocomputing, 416:280–291, 2020.

42

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1.
Available from http://www.i6doc.com/en/.

