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Abstract. High-resolution hyperspectral sensors provide precise but expensive 

information on an object’s chemical composition in various industries. We present 

a method for transferring this capability to customized low-cost multispectral 

solutions. Taking a relevance analysis of spectra for a given problem as our starting 

point, we simulated and designed a multispectral sensor based on inverse 

spectroscopy. The corresponding calibration model, which was derived from the 

simulation of such a multispectral sensor and connected with its hardware, may not 

drop in precision significantly. Different methods of calibration model transfer 

capable of handling a limited subset of the data were tested for this purpose. The 

latent space transformation with Chebyshev polynomials outperformed all other 

methods by yielding the fewest labeled data. 

1 Introduction 

Hyperspectral sensing is a noninvasive alternative to wet chemistry for identifying 

biochemical processes and properties of objects. It is increasingly being used in 

different fields, such as quality control, agriculture, forensics and remote sensing [1]. 

The cost and sensitivity of hyperspectral sensors make them impracticable for many 

applications, including sensor-controlled consumer IoT devices. Many applications do 

not require the complete spectral signature from a high-precision hyperspectral sensor 

to constitute a suitable technical solution. A multispectral sensor system using a subset 

of spectral bands customized for the underlying application can often close this gap [2]. 

A mathematical calibration model is used to convert spectral signatures into 

information relevant to the application. Depending on the type of application, this may 

be a classifier or a regression model. The calibration model correlates the spectral data 

with application-specific target data. Since this correlation normally cannot be 

displayed analytically, methods of machine learning are used for this purpose.  

Information on the actual wavelengths required is essential to the transition from 

hyperspectral to multispectral sensor technology. Usually, extensive sets of samples are 

recorded with a high-precision hyperspectral reference sensor and an initial calibration 

model is calculated for this purpose. This furnishes two essential pieces of information. 

First, an upper estimate of how well the existing measurement task can be implemented 

at all with the most precise data potentially available, and, second, whenever relevance 
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learning methods are used, an application-specific relevance profile. This identifies the 

input variables of the high-dimensional hyperspectral data space, which are actually 

needed or used by the specific calibration model. Subsequent interpretation of this 

relevance profile delivers the spectral design needed for the application-specific 

multispectral sensor.  

 This custom sensor can be simulated by transforming the high-dimensional 

signature of the hyperspectral sensor [3]. The simulation can be used to estimate the 

loss of recognition performance related to the transition from the hyperspectral to the 

multispectral sensor. Once this has been done, construction of the real multispectral 

sensor can begin. Manufacturers’ data sheets often provide the spectral signatures of 

the available optical components, especially filters and, when inverse spectroscopy is 

used (see Section 2.2), of corresponding LEDs. These can be used in the simulation in 

this paper (see Section 2.3). The general dilemma is that the physical samples from the 

initial measurement trial are no longer available or that extensive new measurements 

with the hardware sensor built would be too expensive. Only the repeated measurement 

of a few labeled samples for the transfer and its validation is acceptable.   

 Ultimately, there are three levels of sensors, (1) the hyperspectral sensor with a 

complete high-resolution signature, (2) the simulated multispectral sensor supplying 

the theoretically calculated reduced signature of (1) based on data sheets of available 

optical components and (3) the multispectral sensor that can be built into hardware. 

This paper uses a specially designed benchmark application to analyze the precision of 

these three sensor levels, focusing on different approaches to transferring the calibration 

model from simulation (2) to reality (3) by using only a subset of labeled samples, as 

presented in Figure 1. Standard mathematical methods [4], and the authors' experience 

with model transfer in the context of interoperability [5, 6] are used to do this. 

 

 
Fig. 1: Diagram of the proposed procedure, colored boxes signifying the main steps. 

1-Preparation using the complete set of samples measured by a hyperspectral sensor 

to identify features relevant to the application. 2-Simulation of a multispectral sensor 

incorporating commercially available optical components and calibration model 

training. 3-Reality, i.e., the building of the multispectral sensor and the measuring of a 

subset of the samples used for transfer to transfer the calibration model from 

simulation to reality. 
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2 From Hyperspectral to Multispectral 

Although hyperspectral measurement technology frequently constitutes the optimal 

solution in many fields of application, it entails high capital expenditures. 

Hyperspectral sensors are usually expensive and therefore impracticable for consumer 

applications. We use an application-specific multispectral measurement technology, 

though, the development of which we present in this section.  
 

Data set.   We painted ten metal plates with RAL 3000 fire red paint sourced from ten 

different manufacturers, thus creating a functional 10-class problem in which we want 

to identify the different manufactures. Despite having the same color code, the paints 

themselves have different compositions of different pigments, solvents and binders. 

This benchmark data and the corresponding classification task could be used in various 

application scenarios, such as product authenticity testing, repainted car part detection, 

and general quality control. 

 An ASD FieldSpec® 4 Wide-Res (hereafter called FieldSpec) was used as a high-

precision hyperspectral measuring device, which measures 2,151 spectral bands in the 

range of 350nm and 2,500nm. We measured different locations on each of the ten metal 

plates ten times since the painting can vary within a class. This yielded 100 samples. 
 

Sensor engineering.   We employed the technique of inverse spectroscopy to design a 

low-cost sensor to replace an expensive hyperspectral sensor. Whereas conventional 

spectral measurement systems normally use broadband illumination (halogen) and a 

narrowband sensor, inverse spectroscopy uses narrowband illumination (LED) and a 

broadband receiver, instead. The advantage of inverse spectroscopy is that its electronic 

components, such as LEDs, photodetectors and ADCs, are easily incorporated in 

mobile devices and thus affordable for consumer applications. Although inverse 

spectroscopy results in a lower resolution than our FieldSpec, for instance, such a large 

number of spectral bands and this bandwidth are rarely needed to solve a classification 

or regression problem.  

 The first (red) box in Figure 1 shows the procedure we used in this paper. A 

relevance analysis of the complete spectral signature based on feature importance in an 

RBF network identified the number of wavelengths needed for the calibration model to 

solve the classification problem [2]. Ten wavelengths proved to be all that are needed. 

 A multispectral sensor suitable for this task was easily constructed using a LED 

and detector combination with the principle of inverse spectroscopy, which measures 

the ten requisite wavelengths, and LED emission and photodetector sensitivity curves 

provided by the manufacturer.  
 

Multispectral simulation.   Before the real sensor was built, it was simulated (hereafter 

called simulated sensor) to predict the calibration model’s performance with the 

multispectral data generated. The simulated spectrum !"#$is composed as follows: 

 

 !"#$ = !%&'() · *)(+(, · !-.'' !/012 (1) 

where &'() describes the emission curve of each individual LED, *)(+(, the sensitivity 

curve of each individual detector and !-.'' the spectrum of the FieldSpec.  
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 We measured the data set with the real device built to evaluate transfer 

performance in this study. As with the FieldSpec, we again recorded 100 measuring 

points, which have just ten spectral bands in the range of 400-1,000 nm, though. The 

data set is thus complete for each of the three sensors, i.e., the FieldSpec (1), the 

simulated sensor (2) and the real sensor (3), which, as was mentioned in the 

introduction, are needed to transfer the calibration model from (2) to (3). 

We detect slight differences when comparing the simulated spectra with the real 

spectra, which will affect our classifier’s performance (see Figure 2).  

 

  
Fig. 2: Mean spectral signal of each sample, displaying reasonably low STD (dotted 

line). 

 

There are several reasons for this. For instance, each LED is a unique optical component 

subject to changes not specified in data sheets. Furthermore, LEDs and other electronic 

sensor components are sensitive to temperature change. This causes intensity and 

transversal drift in our spectra, something treated in [6]. Robust methods against drifts 

are presented in [6] and briefly covered in Section 3. 

3 Calibration Model Transfer 

The motivation for calibration model transfer is the need for a calibration model based 

on machine learning, which has been learned by a “master” spectral sensor (in this 

study, the simulated sensor (2)), to perform well even when data is transmitted from a 

different “slave” sensor (in this study, the real sensor (3)). The calibration transfer 

methods employed in this study are presented briefly below. 
 

Piecewise direct standardization.   Often used in chemometrics, piecewise direct 

standardization (PDS) is a method for transferring a calibration model from one spectral 

sensor to another [4, 8]. A transformation matrix is calculated by crosschecking one 

sensor’s spectra with another sensor’s spectra for a few adjacent wavelengths. This 

method is able to handle intensity and transversal drifts. 
 

Offset elimination.   As the name indicates, this method eliminates offsets that 

intensity and transversal shift can cause. A simplification of the transfer component 

analysis [8] is adopted in this paper, which is intended to optimize the maximum mean 

discrepancy. This simplification necessitates standardizing each data set component-

wise. We ultimately subtract the mean spectrum for each sensor in every sample[6]. 
 

Latent space transformation with Chebyshev polynomials.   The effectiveness of 

Chebyshev polynomials in the transformation of spectra has been demonstrated in [9]. 
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The model trained with coefficients of Chebyshev polynomials, representing a latent 

space, rather than with spectra. This method’s suitability for dealing with shifts has 

been demonstrated in [6]. In our study, the data in the latent space were z-transformed 

to normalize the large differences of the Chebyshev coefficients. We call this the 

Chebyshev method. 
 

Transfer learning with tRBF.   A transfer learning method specially developed for an 

RBF network was used in [5] to demonstrate the transferability of spectral sensor data 

in different camera systems. There was one drawback, though: Classes could not be 

omitted during transfer learning in [5]. Data from all the classes involved were 

repeatedly needed, even though training was possible with significantly fewer samples. 

4 Results 

An RBF network with ten prototypes was used as the classification model. This base 

model was subjected to a 10-fold cross-validation. The average classification rates are 

presented below. All models achieved a classification performance of 100% without an 

involved sensor transfer (FieldSpec (1), simulated sensor (2) and real sensor (3)). We 

analyze the results of the model trained with (2) for the data from (3) (see Figure 1). 

We used three samples per class for our transfer. Ten coefficients were computed for 

the Chebyshev method to approximate each spectrum. 

 Different numbers of classes and thus labeled samples were used to analyze the 

effect of incomplete data on the transfer (Figure 1). A maximum of 30 labeled samples 

for all ten classes and three samples per class were used for our transfer, leaving 70 for 

validation. We repeated our experiment ten times to verify the robustness of the transfer 

as a function of classes used, selecting the classes randomly with a fixed seed to ensure 

the same classes were used for each transfer method. The use of one class for each 

transfer ultimately means that each class of our dataset was used once. 

 Figure 3 presents the results of the transfer methods analyzed as a function of the 

number of classes used. 

 

Fig. 3: Results of the transfer using real sensor data processed in a simulated sensor 

calibration model as a function of the classes used. The colored bars represent the 

mean values of ten experiments and the error bars denote the standard deviation. 

 

A larger number of classes is associated with higher costs. The labels for plant samples, 

for instance, come from expensive wet chemical analyses.  
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 Transfer learning and the Chebyshev method both deliver the original 

classification accuracy of 100% when all classes are used for the transfer. Offset 

elimination delivers good results too. All the same, the Chebyshev method already 

delivers satisfactory results when just five classes are used, thus making it the best 

method for this application. We can also see, however, that the standard deviation for 

the classes used, numbering as many as seven, is high. This indicates that the selected 

classes affect the transfer process significantly. 

5 Conclusion 

In this study, we have demonstrated the replacement of an expensive hyperspectral 

sensor with an application-specific and affordable multispectral sensor. We have also 

presented the simulation of such a multispectral sensor’s spectral response and use the 

data for a corresponding calibration model based on machine learning. Moreover, a 

calibration model was transferred from the simulated multispectral sensor to a real 

sensor and evaluated as a function of the classes used for the transfer. Latent space 

transformation with Chebyshev polynomials combined with z-transformation proved 

to deliver the best results for our application. Future research ought to incorporate 

interoperability, whenever there is more than one real sensor, and a data set with larger 

intraclass variance. 
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