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Abstract. Graph Echo State Networks (GESN) have already demon-
strated their efficacy and efficiency in graph classification tasks. How-
ever, semi-supervised node classification brought out the problem of over-
smoothing in end-to-end trained deep models, which causes a bias towards
high homophily graphs. We evaluate for the first time GESN on node
classification tasks with different degrees of homophily, analyzing also the
impact of the reservoir radius. Our experiments show that reservoir mod-
els are able to achieve better or comparable accuracy with respect to fully
trained deep models that implement ad hoc variations in the architectural
bias, with a gain in terms of efficiency.

1 Introduction

Graphs provide a useful structure to represent relations between entities, such
as paper citations or web page networks. A plethora of neural models have been
proposed to solve graph-, edge-, and node-level tasks [1], most of them sharing
an architecture structured in layers that perform local aggregations of node
features. This architectural bias, where node features are progressively smoothed
in deeper layers via local aggregation [2], is the source of most of the issues that
graph neural models are facing. This bias towards locally homogeneous graphs is
more apparent in node classification tasks, where graphs presenting a significant
number of inter-class edges, i.e. a low homophily degree, present a challenge to
convolutive models. Graph Echo State Network (GESN) [3] is an efficient model
within the reservoir computing (RC) paradigm. In RC, input data is encoded
via a randomly-initialized reservoir, while only a linear readout requires training.
GESN has already been successfully applied to graph-level classification tasks [4].
In this paper, we analyze for the first time its application to node classification
tasks, focusing in particular on the efficacy in tackling low-homophily graphs.

2 Node classification and homophily

Let G = (V, E) denote a graph with node feature vectors uv ∈ RU for each
node v ∈ V. We also denote by Nr(v) the set of nodes within r hops of node
v, and by A the graph adjacency matrix. The goal of a semi-supervised node
classification task is to learn a model from a subset of graph nodes with known
target labels {(uv, yv)}v∈Vtrain , in order to infer the node labels yv ∈ {1, ..., C}
for the remaining nodes V \Vtrain using the network structure and input features
uv. Most common graph convolutional models are structured in L layers, where
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each layer learns an embedding for each node based on an increasingly large
receptive field. These layers can be formalized as [5]

h(`)
v = combine

(
h(`−1)

v ,aggregate({h(`−1)
v′ : v′ ∈ N1(v)})

)
, (1)

where node embeddings h
(`)
v ∈ RH of layer ` are obtained by aggregating the

previous embeddings h
(`−1)
v′ of node v’s 1-hop neighbors via aggregate(·), and

then combined with the node’s previous embeddings h
(`−1)
v via combine(·); for

` = 1, h
(0)
v = uv. The final layer L either directly predicts the one-hot encoding

of target label yv, or is followed by an MLP that serves this purpose. The whole
model is trained end-to-end by typically minimizing the cross-entropy loss.

The choice of functions in (1) determines the architectural bias of the model.
For example, GCN [6] layers are defined as h(`) = relu(Âh(`−1)Θ(`)), where
Â is the normalized adjacency matrix, Θ(`) are learnable weights, and h(`) is
the row stack of node features for layer `. It has been shown that stacking
more than three or four layers of graph convolution causes a degradation in

accuracy [2], since representations h
(`)
v converge asymptotically to a fixed point

of Â as ` increases, or more generally, to a low-frequency subspace of the graph
spectrum. This problem is known as oversmoothing. Indeed, by acting as a low-
pass filter, GCNs are biased in favor of tasks whose graphs present a high degree
of homophily, that is nodes in the same neighborhood mostly share the same
class [7]. Formally, homophily in a graph can be quantified [7] as the intra-class
edges ratio

hG = |{(v, v′) ∈ E : yv = yv′}| / |E| . (2)

Changes in the model architectural bias have been proposed to improve classifi-
cation on low homophily graphs. Some solutions individuated by [7] are:

1. separate ego and neighborhood representations in (1), by aggregating on
open node neighborhoods Nr(v) \ {v} and combining by concatenation;

2. extend aggregation to multi-hop neighborhoods Nr(v), r > 1, e.g. as in
graph convolutions with Chebyshev polynomial filters [8];

3. exploit also the representations h
(`)
v computed at each intermediate layer

` < L to make predictions, e.g. as in Jumping-Knowledge networks [9].

H2GCN [7] incorporates all three architectural solutions. Alternative solutions
include altering the graph structure to improve the homophily degree, in order
to increase the ratio of intra-class edges in node neighborhoods [10, 11].

3 Reservoir computing for graphs

Reservoir computing is a paradigm for the efficient design of recurrent neural
networks. Input data is encoded by a randomly initialized reservoir, while only
the task prediction layer requires training. Graph Echo State Networks (GESNs)
extended the reservoir computing paradigm to graph-structured data [3], and
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have already demonstrated their effectiveness in graph classification tasks [4].
Node embeddings are recursively computed by the dynamical system

x
(k)
v = tanh

(
Win uv +

∑
v′∈N1(v)

Ŵ x
(k−1)
v′

)
, x

(0)
v = 0, (3)

where Win ∈ RH×U and Ŵ ∈ RH×H are the input-to-reservoir and the re-
current weights, respectively (input bias is omitted). Equation (3) is iterated

over k until the system state converges to fixed point x
(∞)
v , which is used as

the embedding. The existence of a fixed point is guaranteed by the Graph
Embedding Stability (GES) property [4], which also guarantees independence

from the system’s initial state x
(0)
v . A necessary condition [12] for the GES

property is ρ(Ŵ) < 1/α, where ρ(·) denotes the spectral radius of a matrix,
i.e. its largest absolute eigenvalue, and α = ρ(A) is the graph spectral radius.
This condition also provides the best estimate of the system bifurcation point,
i.e. the threshold beyond which (3) becomes asymptotically unstable. Reser-
voir weights are randomly initialized from a uniform distribution in [−1, 1], and
then rescaled to the desired input scaling and reservoir spectral radius, without
requiring any training. While in graph-level task node features are aggregated
to provide global embeddings, for node classification tasks we directly apply a

linear readout to node embeddings yv = Wout x
(∞)
v + bout, where the weights

Wout ∈ RC×H ,bout ∈ RC are trained by ridge regression on one-hot encodings
of target classes yv.

The contractivity of (3) is a sufficient condition for the GES property [12].
However, the contractivity of graph convolution layers has also been linked to the
degradation of representativeness in deep models [11]. Graph rewiring solutions
to the homophily bias, such as [10], greatly increase the edges of a graph, which
in turn leads to an increase of α and a decrease in contractivity. Therefore, in our
experiments we will explore also values of the reservoir radius beyond the sta-
bility threshold, in this case by arbitrarily fixing the number of iterations of (3)
to K. Indeed, we can interpret the K iterations of (3) as equivalent to K graph
convolution layers with weights shared among layers and input skip connections.
While in deep GCNs convergence to a fixed point of the graph convolution oper-
ator, due to stacking too many layers, has been linked to the oversmoothing issue
[2], GESNs can in principle avoid that by selecting a reservoir radius ρ� 1/α.

4 Experiments and discussion

We evaluate GESN on six node classification tasks with low homophily degree
(≤ 0.3) and three tasks with high homophily degree (> 0.7). We adopt the same
10 scaffold splits 48%/32%/20% of [7], averaging results in each fold over 10
different reservoir initializations. We explore a number of units ranging from 24

to 212, input scaling factors from 1 to 1
320 , readout regularization values from

10−5 to 102, and reservoir radii ρα ∈ [0.1, 9.5] with steps of 0.2 (up to 35 with
larger steps for Squirrel and Chameleon). Embeddings are computed with at
most K = 100 iterations of equation (3).
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Fig. 1: Reservoir radii selected
on each task.
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Fig. 2: Impact of reservoir radius and units
on classification accuracy for Texas.
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Fig. 3: Impact of reservoir radius and units on classification accuracy for Squirrel
(hG = 0.22) and Cora (hG = 0.81), with and without input features.
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Texas Wisconsin Actor Squirrel Chameleon Cornell Citeseer Pubmed Cora

Homo. 0.11 0.21 0.22 0.22 0.23 0.30 0.74 0.80 0.81
Nodes 183 251 7,600 5,201 2,277 183 3,327 19,717 2,708
Edges 295 466 26,752 198,493 31,421 280 9,104 88,648 10,556
Radius 2.56 2.88 9.99 138.60 61.90 2.68 13.74 23.24 14.39
Featur. 1,703 1,703 932 2,089 2,089 1,703 3,703 500 1,433
Classes 5 5 5 5 5 5 6 3 7

GCN 59.5±5.3 59.8±7.0 30.3±0.8 36.9±1.3 59.8±2.6 57.0±4.7 76.7±1.6 87.4±0.7 87.3±1.3

+JK 66.5±6.6 74.3±6.4 34.2±0.9 40.5±1.6 63.4±2.0 64.6±8.7 74.5±1.8 88.4±0.5 85.8±0.9

+Cheby 77.3±4.1 79.4±4.5 34.1±1.1 43.9±1.6 55.2±2.8 74.3±7.5 75.8±1.5 88.7±0.6 86.8±1.0

H2GCN 84.9±6.8 86.7±4.7 35.9±1.0 36.4±1.9 57.1±1.6 82.2±4.8 77.1±1.6 89.4±0.3 86.9±1.4

MLP 81.9±4.8 85.3±3.6 35.8±1.0 29.7±1.8 46.4±2.5 81.1±6.4 72.4±2.2 86.7±0.4 74.8±2.2

GESN 84.3±4.4 83.3±3.8 34.5±0.8 71.2±1.5 76.2±1.2 81.1±6.0 74.5±2.1 89.2±0.3 86.0±1.0

Table 1: Node classification accuracy on low and high homophily graphs (average
and standard deviation; results of fully trained models reported from [7]; results
within one standard deviation of the best accuracy are highlighted).

Accuracy results are reported in Table 1, while Fig. 1 shows the reservoir
radii selected in the 10 splits. We can observe three different behaviors, exem-
plified in Fig. 2 and 3 (top). The number of reservoir units plays a significant
role, offering best results when it is closer to the number of input features. For
Texas, Wisconsin, Actor, and Cornell, the performances of GESN are closer to
the accuracies of MLP, which uses only node features uv, and H2GCN, with
reservoir radii ρα < 1: in this case, the graph connectivity appears to be of
no use. While Squirrel and Chameleon present a low homophily degree, graph
convolution models fare better than MLP: in this case graph connectivity needs
to be taken into account. On these two tasks, GESN improves upon the best
model accuracy by 27.3% and 12.8%, respectively, with reservoir radii selected
in the range 33–35. Finally, on high homophily tasks (Citeseer, Pubmed, Cora)
GESN performs generally in line with graph convolution models, which in turn
do better than MLP; reservoir radii are selected in the range 4–6.

We observe how the best accuracy results are for reservoir radii well above
the stability threshold, which are required when the graph connectivity needs to
be leveraged in classifying nodes. To support our conclusion, in Fig. 3 (bottom)
we report the accuracy on Squirrel and Cora where input features have been
removed. We observe that for stable embeddings (ρα < 1), accuracy significantly
drops below the level reached by having input features, while it reaches almost
the same levels of accuracy for the values of ρα selected with features, which are
well beyond the region where GESN stability is guaranteed.

Finally, we underline the efficiency of GESN. Only the linear readout’s C(H+
1) parameters require training, against the additional O(H2L) parameters of
models that need to be trained end-to-end through many gradient descent epochs
(for further time comparisons, see [4]). The time required to compute node
embeddings and train the readout for a model of 4096 units takes from 0.87 to
1.58 seconds on a GPU Nvidia Tesla V100, depending on graph size.
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5 Conclusion

For the first time, we have applied Graph Echo State Networks to the task of
node classification. Experiments on nine graphs with different degrees of ho-
mophily have shown a classification accuracy generally in line with most fully
trained models, with extraordinary improvements over two low homophily tasks.
Furthermore, contrary to the theory and experiments that demonstrated the
crucial role of system stability in applying GESNs to graph-level tasks, our ex-
periments have shown that node embeddings computed in regions well beyond
the theoretical stability threshold are better suited to represent the graph struc-
ture. Future work will analyze more in-depth the embedding space structure,
the role of reservoir radius in conditioning the filtering properties of GESN, and
the impact of reservoir spectrum.

References

[1] D. Bacciu, F. Errica, A. Micheli, and M. Podda. A gentle introduction to deep learning
for graphs. Neural Networks, 129:203–221, 2020.

[2] Q. Li, Z. Han, and X. Wu. Deeper insights into graph convolutional networks for semi-
supervised learning. In The Thirty-Second AAAI Conference on Artificial Intelligence
(AAAI-18), pages 3538–3545, 2018.

[3] C. Gallicchio and A. Micheli. Graph echo state networks. In The 2010 International
Joint Conference on Neural Networks, pages 3967–3974, 2010.

[4] C. Gallicchio and A. Micheli. Fast and deep graph neural networks. In The Thirty-Fourth
AAAI Conference on Artificial Intelligence, 2020.

[5] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? In
7th International Conference on Learning Representations, 2019.

[6] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional net-
works. In 5th International Conference on Learning Representations, 2017.

[7] J. Zhu, Y. Yan, L. Zhao, M. Heimann, L. Akoglu, and D. Koutra. Beyond homophily in
graph neural networks: Current limitations and effective designs. In Advances in Neural
Information Processing Systems, volume 33, pages 7793–7804, 2020.

[8] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Advances in Neural Information Processing
Systems, volume 29, pages 3844–3852, 2016.

[9] K. Xu, C. Li, Y. Tian, T. Sonobe, K. Kawarabayashi, and S. Jegelka. Representation
learning on graphs with jumping knowledge networks. In Proceedings of the 35th Inter-
national Conference on Machine Learning, pages 5453–5462, 2018.

[10] J. Gasteiger, S. Weißenberger, and S. Günnemann. Diffusion improves graph learning.
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