ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1.
Available from http://www.i6doc.com/en/.

Gap filling in air temperature series by matrix
completion methods

Benoit Loucheur!, P.-A. Absil' and Michel Journée?

1- ICTEAM Institute, UCLouvain
1348 Louvain-la-Neuve - Belgium

2- Royal Meteorological Institute of Belgium
1180 Uccle - Belgium

Abstract. Quality control of meteorological data is an important part
of atmospheric analysis and prediction, as missing or erroneous values can
degrade the quality of weather and climate information derived from these
data. In practice, the presence of missing data in the weather series is
quite common and problematic for many uses. We compare the perfor-
mance of matrix completion methods with the state of the art to solve this
missing data problem. The experimental results are carried out using the
daily minimum and maximum temperature measurements of the network
of weather stations operated by the Royal Meteorological Institute (RMI)
of Belgium.

1 Introduction

In Belgium, the Royal Meteorological Institute (RMI) is the national meteoro-
logical service that provides weather and climate services based on observations
and scientific research. The RMI collects and archives meteorological observa-
tions in Belgium since the 19th century. Currently, air temperature is monitored
in Belgium in about 30 synoptic automatic weather stations (AWS) as well as in
110 manual climatological stations. In the latter stations, a volunteer observer
records every morning at 8 o’clock the daily extreme air temperatures. These
observers communicate their measurements either via a paper bulletin or via
the Internet. Missing data are quite common for manual stations, e.g., the daily
observations may some days not be done or not properly transmitted to the
RMI. AWS data can also sometimes be lacking due to technical problems with
the sensor or with the acquisition and communication systems.

Missing data in weather series can be an issue for many uses and in particular
for the estimation of climate statistics such as climate normals. Climate normals
are 30-year averages of a climate variable that are updated every 10 years by all
meteorological institutes according to the recommendations of the World Mete-
orological Organization [I]. For the recent update in 2021 of the Belgian climate
normals, the completion of the weather series was an essential preparatory step
as few series had complete data from 1 January 1991 to 31 December 2020 (i.e.,
some weather stations started after 1991 while others ended before 2020, other
series combine data from several neighboring stations with possible interruptions
in between and, finally, missing observations are possible for all stations in the
operation phase).
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In this work, we compare matrix completion methods with the state of the
art to solve the problem of missing data completion in meteorological time series.
The aim of the matrix completion methods is to exploit inherent linear relations
within the data in order to recover low rank matrices from a limited number of
observations. These methods became very popular in 2006 with the competition
launched by the Netflix company: the Netflix Prize.

2 Matrix Completion

Given a matrix M € R™*™ the aim of matrix completion is to recover all its
entries from a partially observed fraction of them. The set of observed entries
of M is denoted by Q = {(4,7) : M,; is observed}. As defined by Candes and
Recht [2], the projection Pg with respect to a set of matrix indices € is the
function Pq : R™*™ — R™*" defined by:

M; i (4,5) € Q,

0 otherwise.

[Pa(M)]i; = {

In [2], it was shown that the recovery of missing values from a low rank matrix
X is possible by solving the rank minimization problem:

min  rank(X),
XeRmxn (1)

s.t. PQ(X) = PQ(M)

However, this optimization problem is NP-hard to solve. This formulation tries
to minimize the ¢y norm of the singular values (i.e., the rank). Fortunately, it is
possible to relax the problem by minimizing instead the £; norm of the singular
values (i.e., the nuclear norm: |||, ):

Jmin XL

s.t. PQ(X.) = PQ(M)

It has also been shown in [2] that, in the context of exact low-rank matrix
completion, this formulation recovers the original underlying matrix under some
assumptions.

A different way to approach the low rank matrix completion problem is to
assume that the rank r of the target matrix is known in advance. In this case,
the problem can be stated as:

1 2
i — M) — X
chin -5 [Pa(M) = Pa(X)lF,

s.t. rank(X) <.

3)

This new formulation seeks a matrix X of rank at most r that best fits the given
data in €.
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A common approach to enforce the rank constraint in is to write X as
UW with U € R™*" and W € R"*" yielding:

. 1 Au Aw
min = [Po(M) — Po(UW)|[z + 22 |U|[z + 22 (W], (4)
Uer™*r 2 2 2
WeRT'Xn

Regularization terms

where the two regularization terms, added to help avoid overfitting, are related
to the nuclear norm (see [3]).

In Section 3 we report on the weather data completion results obtained with
two matrix completion methods: SoftImpute [4] and RTRMC [5].
SoftImpute is based on the standard problem to which the constraint is
slightly modified to take into account the notion of measurement noise:

Jmin X
eRmX’n (5)

s.t. Pqo(M) — Pq(X) < 4.

The problem is rewritten using the Lagrange form to obtain the SoftImpute
formulation:

1 )
i 5 [PeM) = PaX)l[z + AIXI, (6)

where A > 0 is a regularization parameter.

RTRMC [5] reformulates with a different regularization term as a nested
optimization problem miny minw and exploits the fact that the inner problem
depends on U only through its column space (which belongs to the Grassmann
manifold G™*"). This yields the formulation:

. . 1 2 >\2 2
ylain min o [[Po(M) = Pa(UW)[p + = [Pa(UW)]E, (7)

where ) is the complement of the set €.

3 Experimental Results

In this section, the considered matrix completion methods are evaluated on me-
teorological time series with synthetic gaps and compared against two state-of-
the-art methods: Inverse Distance Weighting (IDW) and an approach based on
Principal Component Analysis (PCA). IDW [@] is a simple and largely used ap-
proach that estimates missing values as weighted averages of neighboring station
values with weights that decrease with the distance. PCA is a data reduction
method used to find temporal and spatial patterns. Inspired by linear regression,
PCA can also be used as a method to complete data [7].
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3.1 Data

The data completion experiments were performed on a dataset provided by the
RMI with daily minimum and maximum temperature measurements from 97
weather stations in Belgium for a period of 15 years (2005 to 2019) without
any gaps. This dataset was selected as a compromise between the number of
available stations and the length of the series (i.e., a longer period could be
considered but for fewer stations and, inversely, a larger number of stations with
complete time series could be available but for a shorter period).

3.2 Hyperparameter tuning

All the four considered methods present at least one hyperparameter to be tuned
to its best value. As shown in Table [I] each hyperparameter has been assigned
a set of possible values. Then, we generate all possible combinations of hyper-
parameters for each method, as in the GridSearchCV model from Scikit-learn

[8].
Methods Hp | Values tested Thin | Tmax
PCA [7] N | {1,2,---,20} 6 5
IDW [6] P {1,2,---,6} 6 3
SoftImpute [4] | r {1,2,---,20} 15 15
r {1,2,---,20} 13 11
RTRMC H A {1,0.1,0.01,0.001} | 0.001 | 0.001

Table 1: Set of hyperparameters (Hp) for each method with their optimal values
for the daily minimum (Tyin) and maximum (Tpax) temperature dataset. N is
the number of principal components, p is the power value applied to the weight,
r is the rank of the model and A denotes the regularization parameter.

The best set of hyperparameters was determined for each method by Monte
Carlo Cross-Validation [9]. The first 10 years of the dataset (i.e., the data
from 2005 to 2014) is separated into training and validation sets to tune the
hyperparameters, while the rest of the dataset (i.e., the data from 2015 to 2019)
is used as test set to evaluate the performance of the considered methods in their
optimal configurations. Synthetic gaps are generated randomly in the validation
and test sets to replicate as far as possible the characteristics (i.e., frequency,
duration) of the gaps actually present in reality when considering all Belgian
temperature series over a longer period (e.g., from 1991 to 2020). Following the
examples provided in the introduction, gaps of various sizes (i.e., from one month
to 3 years) are generated at the beginning, in the middle and at the end of the
validation and test sets. The optimal set of hyperparameters for each method is
determined as the one that results into the lowest RMSE when averaged over 10
different random splits of the 2005-2014 data into training and validation sets.

For the final evaluation on the test set, 5 random splits are generated ensuring
that each weather station has more or less the same number of synthetic missing
data overall.
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3.3 Evaluation on the test set

Table [2] shows the values of different measures of accuracy of the algorithms
evaluated on the test set. It is important to remember that the main criterion
for choosing the best hyperparameter set is the RMSE. The other criteria provide
additional useful information on the distribution of the error.

Daily minimum temperature
RMSE MAE P; Pys
PCA 1.214 0.899 -2.005 1.905
IDW 1.138 0.821 -1.45 2137
SoftImpute 0.8 0.587 -1.269 1.3
RTRMC 0.932 0.629 -1.301 1.383
Daily maximum temperature

RMSE MAE P; Pys
PCA 1.14 0.842 -1.959 1.725
IDW 0.938 0.71 -1.503 1.575

SoftImpute  0.563 0.414 -0.863 0.913
RTRMC 0.554 0.409 -0.886 0.861

Table 2: Average scores (in °C) on the test set containing the Root Mean Square
Error (RMSE), the Mean Absolute Error (MAE), the 5% and 95" percentile of
the error distribution (Ps and Pys).

Matrix completion methods give noticeably better results than state-of-the-
art methods. Moreover, the performance gap is more noticeable for daily maxi-
mum temperatures than for daily minimum temperatures.

For all methods, the completion performance is worse for the daily mini-
mum temperature data than for the daily maximum temperature data. Daily
minimum temperature data exhibits indeed less spatial correlation, i.e., the min-
imum temperature can vary rapidly with the distance in certain meteorological
and topographic conditions. This makes this weather variable less predictable
and its completion more challenging.

While Table [2] summarizes the performance of the considered methods on
average for all stations, the average error from 2015 to 2019 computed separately
for each station can be represented on a map as illustrated in Figure [l for the
daily maximum temperature dataset. It is important to note that the scales are
not the same for Figure [Ta][Ib] and Figure for the sake of readability.
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