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Abstract.  The flourishing field of deep learning for graphs relies on
the layered computation of representations from graph-structured input
data. Message passing is the most common strategy for such processing of
graphs, based on an efficient information exchange among the connected
nodes via a local and iterative procedure. Representations learned in this
way can be used to address different tasks related to nodes, edges, or even
entire graphs. This tutorial paper reviews fundamental concepts and open
challenges of deep learning for graphs and summarizes the contributions
that have been accepted for publication to the ESANN 2022 special session
on the topic.

1 Introduction

In this tutorial paper, we present the basic concepts of the relatively recent
research topic of deep learning for graphs, which is the subject of a special session
at the 30" European Symposium on Artificial Neural Networks, Computational
Intelligence, and Machine Learning organized by the authors.

Deep learning for graphs is a flourishing field that encompasses machine
learning models, called Deep Graph Networks (DGNs) [1], composed of several
abstraction layers and addressing tasks associated with graph-structured data.
Generally speaking, a graph is an object that represents entities interacting
with each other. Both the entities and their relations — usually called nodes
and edges, respectively — can have information attached to them, like atom
and bond types in chemical compounds, allowing us to flexibly represent many
real-world phenomena. A pictorial example of a molecular graph is shown in
Figure 1 to ease the subsequent exposition. The addressed tasks can be associ-
ated with nodes, edges, or properties of entire graphs. An example of task over
nodes is the prediction of properties of a social network user based on her /his
connections. In this setting, the dataset usually consists of a single large graph
and the observations are the nodes of the graph with the associated informa-
tion. Similarly, suggesting relationships (e.g., friendships) in a social network
can be cast as an edge-level prediction task. In graph-level prediction settings,
instead, each input is a whole graph and the goal is inferring associated (global)
properties, e.g., toxicity in humans of chemical compounds.
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Fig. 1: Caffeine molecule represented as a graph where nodes denote
atoms/groups with their type and edges reflect whether the bond is single or
double. The neighborhood N (u) of node u is marked by the green dashed area.

2 Basic Definitions and Notation

We introduce some basic terminology about graphs that will be useful through-
out the document. A graph can be defined as a tuple g = (V,€, X, A) where
V represents the set of nodes (also known as vertices) and &£ defines the edges
(or arcs) representing interactions between pairs of nodes. When we deal with
undirected graphs, edges encode information about unordered pairs, i.e., £ C
{{u,v} | u,v € V}; in contrast, a directed graph specifies ordered pairs of in-
teractions between nodes, i.e., &€ C {(u,v) | u,v € V}. As a way of comparison,
the graph in Figure 1 is undirected. The sets X and A define the domain of the
features attached to nodes and edges, respectively; the most typical case is to
use R% d, € NT as the domain of node features and some finite alphabet for
discrete types of relationships.

There are different ways in which we can represent edge information. One of
these is by an adjacency matriz A € {0, 1}V*IVI| Assuming V = {1,2,...,n}, a
generic entry u, v of A is 1 when (u,v) € & (directed case) or {u,v} = {v,u} € £
(undirected case), and it is 0 otherwise; therefore, adjacency matrices of an
undirected graphs are symmetric. More generally, the same n-node graph can
be represented by multiple, yet all equivalent, adjacency matrices arising from
all n! possible indexing of the nodes in V. Such ambiguity gives rise to what is
known as graph isomorphism problem [2].

In dense graphs, most of the entries of A are one, whereas the opposite is
true in sparse graphs. For large and sparse graphs, the adjacency matrix can
become an inefficient representation of the information, as most of the entries
are 0; in this case, a more convenient representation is an adjacency list, that
specifies, for each node, which are its neighbors. The neighborhood of node v is
defined as the set of nodes directly connected to it: N, = {u € V| (u,v) € £}.
When the neighborhood always includes the node v itself, we speak of “closed”
neighborhood (“open” otherwise). The neighborhood of node w is depicted by

482



ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1.
Available from http://www.i6doc.com/en/.

Vil v
de
Y
Encoding
Vl|  Z
Prediction N
Yy
d,
V| 4 '
Vsl
A
Vil

Fig. 2: The general framework for learning on graphs. First, the input graph is
encoded and latent node representations Z are produced, then standard machine
learning is applied to generate the desired output. Node (edge) tasks require one
prediction per node (edge), whereas in graph-level tasks the node representations
are aggregated to produce a single output for the whole graph.

the green dashed area in Figure 1. We conclude the section by introducing the
concept of permutation invariance, which is extremely useful in all the meth-
ods presented below, including those that contributed to the special session. A
function is said permutation invariant if it does not change its output when the
components of the input are reordered according to some permutation. The sum,
the mean, the maximum and the product operators are straightforward exam-
ples of permutation invariant functions. In the context of graphs, permutation
invariance is intended with respect to the permutation of the nodes.

3 The Building Blocks

Dealing with structured data often requires defining machine-learning models
able to learn graph isomorphic invariant representations, or embeddings, for
nodes, thus producing graphs with the same topology of the input graph but
different node features. This isomorphic transduction of the graph allows to
tackle nodes, edges, and graph-related tasks; for instance, a graph representa-
tion can be easily computed by aggregating together its nodes’ representations.
Node/graph embeddings are usually learned only as intermediate representations
to solve a downstream task, but it is not uncommon to use such embeddings for
other purposes, e.g., data visualization. For instance, we may compute the
distance or kernel between two node embeddings to assess the affinity of two
corresponding users in a social network, or jointly train a graph-level embedding
module and a dense feed-forward neural network to predict a drug’s toxicity.

The Message-passing paradigm. The vast majority of DGNs rely on the message-
passing processing paradigm [3] to propagate information between neighboring
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nodes. The message-passing paradigm provides easy-to-implement operations
that allow subsequent refinements of the node embeddings. Typically, a message-
passing operation can be written as

hitt = Update(hf) , Aggregate( {{hﬁ tu €N} )>7 voey, (1)

where h!, € R% denotes a d.-dimensional embedding of generic node v at layer ¢,
h’*! the updated embedding after message passing, and {{-} denotes a multiset;
more general forms, accounting for edge information can be defined as well [1].
Stacking several message-passing layers results in typical DGNs, such as those by
[4, 5, 6, 7, 8]. The advantages of operations like (1) are manifold, including the
fact that the operations are performed locally in the graphs (so that updating a
node does not require processing all graph nodes) and that the parametrization
of Update and Aggregate functions does not depend on the number of neighbor-
ing nodes and can be applied to graphs of different sizes and topologies. The
message-passing operation in (1) at layer ¢ can be also represented in matrix
form in most cases; a simple example is

H€+1 _ HZ || AHZWE7 (2)

where H® = [...|h{|...]" is the matrix stack of all input node representations
and H'F! that of the output. Confronting equations (1) and (2), Update(a, b)
in (1) is instantiated in (2) as al|b, that is the concatenation function, and
Aggregate is instantiated as the sum of the node embeddings transformed by a
linear map parametrized by a learnable matrix W* € R *de  Moreover, note
that message-passing layers as in (1) and (2) are invariant to node permutations
by construction: for any permutation matrix I, the output of (2) when feeding
ITH' as input is ITH!*!. Efficient implementations nowadays rely on sparse
matrix multiplications [9, 10]. Another path that has been recently pursued
to define efficient architectures is reducing the excess complexity of common
DGNs by removing the non-linearities [11, 12]. In addition, Reservoir Com-
puting (RC) approaches that provide a way to implement extremely efficient
alternatives to end-to-end training of Neural Networks have been extended to
graph domains [13, 14, 15]. We also remark that message passing is not lim-
ited to neural architectures: fully unsupervised, deep and probabilistic models
exist as well [16, 17, 18]. Finally, we mention that DGNs following different
computational paradigms have been proposed as well (for example, see [19]).

Expressive power of DGNs. Not all DGNs are equally powerful in solving given
problems. The most common strategy to assess the expressive power relies on
the Weisfeiler-Lehman (WL) method [20] which results in a hierarchy of tests of
increasing power in deciding whether or not two graphs are isomorphic; several
papers relied on the WL criterion [8, 21, 19, 22], with [23] proving universal
approximation capabilities for some DGNs. Nevertheless, some limitations have
started emerging, and other strategies have gained attention [24, 25, 26, 27].
From a machine learning perspective, other aspects matter too, like the ability to
produce similar embeddings, or outputs, when processing similar inputs [28, 29].
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Graph Pooling. Similarly to pooling in convolutional neural networks for reg-
ular grids, graph convolutional layers are often interleaved with graph pooling
layers. Graph pooling operators, however, have been used also for graph coars-
ening. Performing pooling in the context of graphs turns out to be very complex
mainly for the lack of a predefined structure, like grid connectivity. In order
to address these issues, in the last few years, different types of graph pooling
operators have been proposed [30, 31, 32, 33, 34, 35, 36]. Virtually every pool-
ing operator can be implemented as the composition of three operations: Select,
Reduce, and Connect, as highlighted by [37], which helps to analyze and guide
the choice of an appropriate pooling method to use in the given application.

4 What Lies Ahead

In this section, we give pointers to some of the most promising and exciting
directions in the field of deep learning that we see in the literature.

Uncertainty Quantification. DGNSs, as many other machine learning methods,
generally lack the ability to specify some measure of confidence about their
predictions, let the problem be classification or regression [38]. This is a serious
problem when the predictions are used in high-stake domains like healthcare,
e.g., patient networks. By endowing DGNs with sound ways to estimate their
uncertainty, the end user can make better informed decisions about the next
course of action.

Spatiotemporal graphs. In applications like those involving sensor and trans-
portation networks, we deal with time series displaying both temporal depen-
dencies as well as dependencies among the entities that are producing the time
series. In such settings, promising DGNs for such spatiotemporal graphs have
appeared in the literature to tackle problems such as time series forecasting and
missing-data imputation, e.g., see the works by [39, 40, 41].

Structure Learning. The information carried by the structure of graphs is often
useful to improve the predictive performance compared to structure-agnostic
alternatives. On the other hand, by learning the graph structure we can discover
additional interactions which may have been missing in the original graph [42]
or generate entirely new chemical compounds with specific properties of interest
[43]. That said, the most common structure learning methods scale poorly to
large datasets, as they try to predict the entire adjacency matrix of the graph.
Investigation of more efficient ways to do so may pave the way for large-scale
structure learning.

5 Special Session’s Contributions

The contributions to this special session address a heterogeneous and quite orig-
inal set of problems that can be formulated as a graph learning task.
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e Romero and De Bie [44] propose a new method to recommend songs to
users by exploiting a dataset of playlists represented as a weighted graph.
The authors frame the problem as a link prediction task and derive a
graph-embedding strategy, based on a Poisson model, to predict the con-
tinuous edge weight between two songs. The strategy is shown to be more
effective than common song-recommendation baselines without significant
overhead.

e Tortorella and Micheli [45] evaluate Graph Echo State Networks (GESN)
[13] on semi-supervised node classification tasks with varying degrees of
homophily (i.e., the ratio of connected nodes with the same value for a
target attribute). The goal is to analyze the impact of oversmoothing of
representations, a problem known to severely impact the performances of
popular models like the Graph Convolutional Network (GCN) [6]. The
empirical analysis provides a favorable comparison of GESN compared to
ad-hoc architectural variations that counteract oversmoothing.

e Saveri and Bortolussi [46] investigate the problem of propositional model
counting (#SAT) using a combination of Belief Propagation and Graph
Attention Network (GAT) [7]. The learning problem is formulated as a
factor graph and decomposed as a product of functional terms, which are
implemented using the attention mechanism of GAT. The authors show
that the approach scales to Boolean formulae of larger sizes and generalizes
to others with different distributions of terms.

e Landolfi [47] develops a parallel algorithm for the efficient computation
of EdgePool [48], a sparse pooling method that, unlike other alternatives,
preserves the connectivity of the original graph structure by performing a
series of edge contractions. By leveraging well-known reduction techniques
from graph theory, the proposed method can outperform other competitors
while scaling to larger graphs, thus making EdgePool a widely applicable
technique.

e Finally, Caldart et al. [49] address the fairness problem from the perspec-
tive of bias being introduced by the relational information in the graph.
The authors extend an existing perturbation-based fairness method, propos-
ing to perturb the adjacency matrix in a biased way to reduce the amount
of edge homophily in the graph; then they exploit an appropriate loss func-
tion to learn fair representations. The approach is shown to improve over
all fairness metrics on different node classification tasks.

6 Conclusions

Deep learning for graphs is a flourishing research field with an increasing number
of published papers every year. With this tutorial and ESANN 2022 special
session, we gave an overview of the most common building blocks for processing
graphs, like message-passing and pooling layers. We reported some of the most
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promising research directions that have attracted recent attention. Finally, we
summarized the interesting papers contributing to the present special session.
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