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Abstract. The notion of concept drift refers to the phenomenon that the
distribution, which is underlying the observed data, changes over time. As
a consequence machine learning models may become inaccurate and need
adjustment. While there do exist methods to detect concept drift or to
adjust models in the presence of observed drift, the question of explaining
drift is still widely unsolved. This problem is of importance, since it enables
an understanding of the most prominent drift characteristics. In this work
we propose to explain concept drift by means of contrasting explanations
describing characteristic changes of spatial features. We demonstrate the
usefulness of the explanation in several examples.

1 Introduction

Data from the real world such as social media entries or measurements of IoT
devices are subject to continuous changes known as concept drift [1, 2]. It can
be caused by seasonal changes, changed demands, ageing of sensors, etc. Since
drift might induce severe problems in machine learning models, it is important
to understand the nature and the characteristics of the ongoing drift. In recent
years, several approaches were proposed to deal with concept drift [3, 4]. These
range from non-parametric methods over gradient techniques up to ensemble
techniques for dealing with streaming data [5]. In addition to model adaptation
schemes, a large number of methods aims for a detection of drift, an identifi-
cation of change points in given datasets, or a characterization of overarching
types of drift [6, 7]. While drift detection is a first step to enable necessary hu-
man intervention, a more detailed description is desirable. Current methods are
limited to drift detection, drift quantification [4], the identification of features
that characterize the drift [8, 9], and first approaches to determine the location
of drift in data space [10], which allows one to characterize certain forms of drift,
but do not provide a condensed and easily accessible explanation.

In this work, we aim for a novel, fully automated, exemplar-based drift char-
acterization and explanation scheme, which highlights characteristic spatial lo-
cations and their temporal behavior, which lead to the observed drift. To achieve
this we combine explainable AI (XAI), which usually does not focus on the ex-
planation of drift [11], with the drift localization method presented in [10]. We
focus on contrasting explanations [12], and in particular, counterfactual expla-
nations [13] which are considered to align well with explanation schemes that
are used by humans [14]. However, the presented explanation scheme can eas-
ily be adapted to other explanation methods from the literature [15]. Thereby,
we significantly improve existing methods, which are usually limited to feature-
wise inspections [16, 17, 8]. We are not aware of approaches, which investigate
complex explanations of drift.

∗Funding in the frame of the BMBF project TiM, 05M20PBA, and from the VW-Foundation
for the project IMPACT is gratefully acknowledged.

†Affiliation with the University of Cyprus

293

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1. 
Available from http://www.i6doc.com/en/.  



Before Drift

After Drift Drifting Areas

Drift Localization [10]

Representing Prototypes

Clustering
Section 3.2

Explanations

Compute Counterfactuals
Section 3.1

Fig. 1: Generating conterfactual explanation for concept drift (conceptual)

This paper is organized as follows: In the first part (Section 2) we recall the
formal definitions of concept drift and drift localization, and provide a high level
description of the provided explanation scheme. We then consider contrasting
explanation in the context of drift localization in Section 3. In the second part
we empirically evaluate the resulting algorithm in two experiments (Section 4).

2 Problem Setup

In classical machine learning (ML) one considers a generative process p on the
sample space X . A data point is an instance of a random variable X ∼ p. Many
processes in real-world applications are time dependent. One prominent way to
take time into account, is to consider a family of probability measures pt on X ,
indexed over a set T , representing time. The distributions pt can change over
time and concept drift takes place if pt �= ps for at least one pair t �= s [18].

While drift detection techniques enable automatic drift identification it is
often unclear how to react to such drift. This challenge is ill-posed in general
and requires expert insight. An explanation would increase an understanding of
the ongoing drift and thereby enable a human to initiate an appropriate reaction.
A drift characterization is particularly demanding for high dimensional data or
a lack of clear semantic features. For this purpose, we rely on an example-based
explanation scheme, which work by presenting pairs of samples that are similar
up to contrasting features, that are particularly relevant for the drift [13, 15].

Suppose we are considering steams of pictures taken by stationary web cams.
If a building is constructed or demolished within sight of one of the cams, it will
cause drift. A fairly good explanation of this drift is given by presenting two
picture, taken by the same web cam, one containing and one lacking the building
– allowing the user to grasp the difference in an intuitive way.

As shown in [10] such features can be found by ML models that characterize
regions in data space where the distribution changes. The problem of identifying
those regions – referred to drift localization [4, 10] – was tackled in [10] by
training a model to predict the time t based on the observed sample x. Since
this results in a classical ML model, we can apply well known methods to extract
explanations – like the absence of the building in the example above.

Since contrasting explanations provide local rather than global insight, we
also need to identify particularly characteristic samples where the drift manifests
itself in an automated fashion. We rely on weighted prototype-based clustering
methods and show the validity of this simplified approach. In Figure 1 we
illustrated the explanation process and provide the pseudocode in Algorithm 1.
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In accordance to [10] we will focus on the case of two time points T = {1, 2}
with disjoint samples sets S1, S2 sampled from p1 and p2, respectively.

2.1 Related Work

Quite a number of approaches aim for a detection and quantification of drift
[4, 19], its localization in space [4, 10], or visualization [16, 8, 17]. Several
approaches focus on feature-wise representations of drift [16, 19, 8, 17]. These
are limited if high dimensional data or correlated features are dealt with. To
the best of our knowledge no other work uses general XAI methods to explain
concept drift, and the existing methods cannot be applied to domains like images.

3 Extracting Explanations

Since the task of drift localization can be reduced to a probabilistic classification
problem as discussed in [10], we can rely on standard explanation schemes to
explain the classification models used for the drift localization to obtain an
explanation for the drift. Model explanations have been studied extensively in
the past [11]. One prominent tool, which is considered to be intuitive for human
users [20, 15], are counterfactual explanations, which we will recall in the next
section. The main idea is to illustrate the characteristic patterns by contrasting
a sample, obtained from a time point, with a generated second sample, that is as
similar as possible except that it does not carry the time point specific patterns.
By presenting both samples to the user they can grasp this patterns and thereby
understand the drift. We exploit the detail of this idea in the next sections.

3.1 Explanations via Counterfactual

Counterfactuals explain the model’s classification of a given sample by contrast-
ing it with a similar sample, which is classified differently [13]: For a classifier
h, a loss function �, and dissimilarity d, a counterfactual x′ for x ∈ X with class
y �= h(x) is obtained by minimizing �(h(x′), y) + C · d(x′, x), where C > 0 is a
regularization constant.

This initial definition suffers from several problems as they might be implau-
sible [21, 22], a problem that can be solved by considering samples that lie on
the data manifold only [22], e.g., by enforcing a lower threshold α > 0 for their
probability. Another approach [23] restricts feasible solutions to the training
data, i.e. we select the closest sample from the training dataset classified as y.

3.2 Explaining Drift by Means of Contrasting Explanations

We propose to apply counterfactuals to obtain an explanation for drift using the
following pipeline (see Figure 1): In [10] the task of identifying relevant infor-
mation regarding the observed drift was reduced to a probabilistic classification
problem, mapping representative samples to their time of occurrence via a model
h. This connection enables us to reduce understanding drift to providing con-
trasting explanations (i.e. counterfactuals) for h. Those can be computed using
h directly or by training a second model that classifies the samples into “before
drift”, “after drift” and “non-drifting” – where the classes are obtained by using
drift localization [10]. This can drastically decrease the computational cost of
the construction of counterfactuals as the model is usually less complex.
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Algorithm 1 Explain Drift

1: Input: S ⊂ X × T dated data points
2: L← SelectDriftingSamples(S) � Drift localization
3: h← TrainModel(L ∪ {(x,−1)|(x, tx) ∈ S \ L}) � −1 is class “no drift”
4: for all t ∈ T do
5: Pt ← ClustProto({x | (x, tx) ∈ L, tx = t})
6: for all x ∈ Pt and t′ ∈ T do
7: print ContrastExpl(h, x, t′)
8: end for
9: end for

The first step of this approach is to determine the samples which are used for
the computation of counterfactuals. In case there is a human in the loop, they
can select the most interesting samples. As we aim for a completely autonomous
system, which explains the drift at each time step it is mandatory to automate
this step: to do so we first filter out the non-drifting samples and then compute
representations of the drifting data using prototype-based clustering algorithms
like mean shift, Gaussian mixture models, or k-means. We refer to the obtained
prototypes as characteristic samples. This approach provides a valid resampling
scheme that allows a statistical interpretation in terms of reweighting functions.

Combining all these steps, we obtain Algorithm 1. The explaining routine
is started if drift is detected and explanations are requested. Time and space
complexity depend on the specific algorithmic instantiations, however, for many
popular choices of subroutines we end up with O(n2).

4 Experiments

In this section, we empirically evaluate our proposed method1. This includes
a quantitative evaluation of identifying relevant features, as well as example
applications to benchmark and image data streams. In the following we assume
that the data stream is partitioned by a drift detection method into non-drifting
segments, for which contrasting explanations will be computed.

Drifting features / Sensor faults (Nebraska Weather)We evaluate the
capability to identify drifting features. We simulate sensor fault induced drift
on the Nebraska Weather dataset [24]. We draw two windows from the stream
(each containing 500 randomly selected samples) and induce one of the following
feature perturbations (FP) to one feature: setting to zero, adding a fixed shift,
or adding Gaussian noise. We then use sparse counterfactuals to identify those
features, whereby we consider a feature as relevant for the drift, if the number
of explanations that make use of it significantly surpasses average.

We use decision trees as model h, affinity propagation to obtain the char-
acteristic samples, and assume that a localization is provided to evaluate the
robustness of the explanation. We investigate the effect of the amount of lo-
calization errors (LE), which are simulated by marking a certain percentage of
samples as non-drifting. To evaluate the method we measure how many times
the perturbed features is accurately identified as drifting by the method (pre-

1The code and additional examples are available at
https://github.com/FabianHinder/Contrasting-Explanation-of-Concept-Drift .
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(a) Explanation using raw data.

(b) Explanation using VAE.

Fig. 2: Explanation of MNIST.
In each image: Original/Prototype
(Top), Counterfactual (Bottom)

FP LE precision recall F1

g
a
u
ss
ia
n 0% 0.84±0.31 0.91±0.29 0.87±0.29

10% 0.84±0.33 0.89±0.31 0.85±0.32
20% 0.80±0.35 0.88±0.32 0.82±0.33
40% 0.78±0.37 0.85±0.36 0.80±0.36

sh
if
t

0% 0.86±0.24 0.99±0.10 0.90±0.17
10% 0.88±0.22 1.00±0.00 0.92±0.14
20% 0.86±0.25 0.98±0.14 0.90±0.19
40% 0.87±0.25 0.97±0.17 0.90±0.21

ze
ro

0% 1.00±0.00 1.00±0.00 1.00±0.00
10% 1.00±0.00 1.00±0.00 1.00±0.00
20% 1.00±0.00 1.00±0.00 1.00±0.00
40% 1.00±0.00 1.00±0.00 1.00±0.00

Table 1: Mean feature detection scores on
Nebraska Weather dataset over 100 runs.

cision, recall, and F1). The results are shown in Table 1. As can be seen our
method provides sufficient performance for all types of considered perturbations
and even in case of a high number of wrong localizations.

Non-sematic, high dimensional data (MNIST) We specifically show-
case our method on a stream of image data. In contrast to the first experiment,
the drift localization is considered as a part of the explanation process. We
consider a subset of the 28× 28-pixel black-white MNIST images. The digits 1,
3, and 4 are present before and the digits 7, 8, and 4 after the drift. Intuitively
speaking the drift replaces 1 and 3 by 7 and 8 in the stream. We performed two
experiments: 1) on the raw dataset we use a decision tree as model h (as in [10])
and select characteristic samples by affinity propagation and the counterfactuals
from the training data (Raw), 2) we use a variational autoencoder and perform
the drift localization and generation of the counterfactuals in the latent space
using decision trees and k-means (VAE). We generate four explanations in both
directions, i.e. before to after drift and after to before drift, the results are pre-
sented in Figure 2, with the upper row showing the characteristic samples and
the lower row the associated counterfactuals. We observe that only the digits
1, 3, 7, 8 are considered to be relevant for the drift; only the digit 4, which is
non-drifting by design, is not considered to be relevant for the drift as expected.
Thus, our method shows exactly the “replacement” that constitutes the drift.

5 Conclusion and Further Work

We introduced a new method for explaining drift by means of characteristic
sample. We derived the explanation methodology by reducing the problem of
explaining drift to the problem of explaining a model that is used to localize
the drift. We demonstrated the usefulness of this methodology in two examples,
and the empirical results demonstrate that this proposal constitutes a promising
approach as regards drift explanation in an intuitive fashion. The technology
is yet restricted to discrete time points with well defined change points. An
extension to continuous drift is subject of ongoing work.
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