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Abstract. Neural networks trained on data whose distribution is shifted
in time suffer greatly from performance degradation. This problem is
known as catastrophic forgetting, i.e. learning new classes leads to loss of
accuracy on previously seen ones. A replay buffer can mitigate this prob-
lem by storing and reusing some of the data. In this paper, we propose
a modification of sampling to the memory buffer using deep features ex-
tracted from the classifier itself to increase the diversity of stored samples.
Our method demonstrates a consistent reduction in forgetting verified on
different settings for MNIST, SVHN and CIFAR-10 datasets.

1 Introduction

Continual learning is a type of machine learning where model is trained on a
data stream in which new classes or tasks appear over time. The main problem
of this setting is catastrophic forgetting — a severe decrease in performance for
previously trained tasks. Current approaches to this problem can be divided into
three categories: (1) prior-based methods, which regularize model parameters to
keep them in feasible regions of previous tasks, (2) parameter isolation dedicating
different parts of the model to different tasks, and (3) replay-based that stores
information about seen data [1].
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Fig. 1: Experience Replay workflow for the Online Continual Learning problem.
The part with our contribution is highlighted in red. We enhance the reservoir
sampling by incorporating information on sample representations and choose
those examples, which provide better diversity in the memory buffer.

In our work, we primarily focus on complex Online Class-Incremental learn-
ing [2]. In this scenario, the dataset is divided into several classification tasks
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with at least two classes for each task. The task information is not available to
the classifier during the inference. The model sees the data in an online manner
— one minibatch at a time without access to the previous samples, except for
those stored in the memory buffer.

Our algorithm is based on Experience Replay [3] (Fig 1), which belongs
to replay-based approaches that effectively mitigate the problem of catastrophic
forgetting with retention of some previously seen data for retraining or optimiza-
tion on it. Experience Replay repeats learned classes using information stored in
a buffer or produced by a generative model trained to retrieve the seen classes.
Because of the limited space in the buffer, a natural research question arises —
which samples should be stored in memory and how to select them from the in-
coming data stream. A typical solution is reservoir sampling [4]. By improving
on this approach, we aim for a better diversity of samples in the buffer (Fig 2).
Our solution gives better results than models with simple reservoir sampling in
most cases on three different data sets.

a) b)

Fig. 2: A conceptual visualisation of the replay buffer, where a) the reservoir
sampling is used and b) our algorithm is applied. The reservoir sampling clearly
does not provide enough diversity within a given class (all red-marked samples
are very similar).

2 Related work

Reservoir sampling is a mechanism of uniform random selection to the memory
buffer in Experience Replay. It has the known problem of vanishing underrepre-
sented classes, which has been addressed by several approaches in the literature
[5, 6, 7]. The most common is Class Balanced Reservoir Sampling [8], which
prioritise replacing samples from the most represented class in the buffer. Our
approach is advantageous in that it allows for diversity inside classes and bal-
ances memory even more that way.

Selection of representative and diverse samples was proposed based on the use
of a histogram of class mean [9], Softmax distribution entropy in the output layer
[10], distance to decision boundaries [7], a bilevel optimization with cardinality
constraints [11] and classification uncertainty [12]. While being computationally
complex, this methods rely on parameters that can be unstable in Continual
Learning, especially decision boundaries.

There are several strategies proposed for sampling from the replay buffer
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[13, 5, 14]. We chose the state-of-the-art Maximally Interfered Retrieval (MIR)
[14] method to test whether the proposed buffer diversity can further improve
the performance of replay-based approaches.

3 Method

We modify the common Experience Replay workflow for memory-based methods
(Fig. 1). Our contribution is a new memory management strategy that provides
greater diversity of samples in the replay buffer by calculating cosine similarities
between representations and rejecting samples with the close neighbor.

First, we apply the reservoir sampling to each minibatch for uniform random
selection of subsetXsub from online batch (batch from the online stream of data).

The second step is to extract representations from the selected hidden layer
of the model. The embeddings are obtained for Xsub and with period of selected
updating interval T — for all samples stored in memory Xmem. The produced
representations along with the samples are also stored if T > 1.

The final step is to add Xsub to Xmem and since for a non-zero size Ssub of
Xsub, the new size Smem of Xmem will be greater then the maximum allocated
Smax, Ssub samples must be removed. We choose candidates for removal by
ranking pairs of samples with the highest cosine similarity between their rep-
resentations. This is the classical dynamic closest-pair of points problem from
computational geometry [15], which in our implementation is solved with the
fast hierarchical clustering [16] with worst case initialization (filling the data
structure after reaching the maximum size of the replay buffer) time for k clus-
ters O(nk log (n/k)). The time for search of the closest pair will be O(n). A
single insertion or distance update also takes O(n). Expected time per deletion
or point update is O(n) with worst case O(n2).

For ranked pairs, while Smem is greater then Smax, we continue to remove
the first sample from the pair. If the samples belong to different classes (and
information about classes is available), both are kept.

Our method requires a careful selection of two hyperparameters — the model
layer from which the deep features of the sample will be extracted and the up-
dating interval T . The value of T > 1 can improve the generalization of repre-
sentations and speed up calculations, but in general T = 1 is a recommended
starting point.

4 Experiments

We followed the MIR [14] evaluation protocol and split MNIST, SVHN and
CIFAR-10 datasets into 5 tasks each, selecting 2 classes per task. The same
architecture and hyperparameters were used: single-layer MLP for MNIST and
ResNet18 for SVHN and CIFAR-10. For each training step 10 samples from the
online stream and 10 from the replay buffer (except for the first task, where only
online samples are used) are merged before passing to the model. The classes
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of samples selected from the replay buffer are always different from those in the
online batch.

Metrics used for comparison are average accuracy [13] and average forgetting
[10], computed after training on the last 5th task. The average accuracy at task

k is defined as Ak = 1

k

∑k

j=1
ak,j , where ak,j is the accuracy on the j-th task

after training incrementally from the first task to k. The average forgetting at
task k is averaged forgetting of all tasks from first to k, where task forgetting is
the difference between the maximum accuracy on the task throughout the whole
learning process and the current accuracy.

Algorithm 1 Replay memory buffer sampling strategy

Input: model M , online batch of training examples X, replay buffer Xmem, repre-
sentations of samples stored in replay buffer Rmem, maximum buffer size max size,
index of current batch s

Hyperparameters: index of model layer l, representation update interval T
Output: updated replay buffer X̂mem, representations of samples stored in updated
replay buffer R̂mem

Xuni ← reservoir(X) ⊲ use reservoir sampling on the batch
R←Ml(Xuni) ⊲ get representation of the batch X from layer l of M

for all xi ∈ Xuni, ri ∈ R do

add xi to Xmem

add ri to Rmem

if size of Xmem ≥ max size then

if s mod T = 0 then Rmem ←Ml(Xmem)
end if ⊲ get representations for samples in memory each l steps

distances← pairwise cosine similarity(Rmem)
[idxa, idxb]← arg min(distances) ⊲ pair of the closest representations
remove Xmem[idxa] from Xmem

remove Rmem[idxa] from Rmem

end if

end for

X̂mem ← Xmem

R̂mem ← Rmem

5 Results

The results in Table 1 are presented for reservoir sampling to memory buffer
and our method, both combined with two strategies of sampling from the buffer
— random and MIR. Three common memory buffer sizes were tested for each
combination. We see an improvement in almost every case we investigate.
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Table 1: Average accuracy A5 and average forgetting F5 on all five tasks after
learning all of them, for Split MNIST, Split SVHN and Split CIFAR-10 protocols.
Each value is the average of 10 runs. Sampling is a strategy for selecting samples
from the replay buffer for Experience Replay and Memory is the total size of
the replay buffer.

MNIST

Sampling Memory Reservoir DFB (our)
A5(%) ↑ F5(%) ↓ A5(%) ↑ F5(%) ↓

Random 50 61.80 ± 2.63 38.08 ± 2.63 63.80 ± 1.65 34.38 ± 1.63

100 75.91 ± 1.41 22.71 ± 1.67 77.33 ± 1.62 21.56 ± 1.78

200 86.55 ± 1.47 13.08 ± 2.08 86.44 ± 1.33 12.23 ± 0.96

MIR 50 70.60 ± 2.24 28.95 ± 2.80 74.64 ± 2.07 23.38 ± 2.39

100 83.80 ± 1.40 14.90 ± 1.09 85.59 ± 1.24 13.03 ± 1.47

200 90.65 ± 0.86 8.84 ± 1.07 91.26 ± 0.88 7.89 ± 1.02

SVHN

Sampling Memory Reservoir DFB (our)
A5(%) ↑ F5(%) ↓ A5(%) ↑ F5(%) ↓

Random 50 15.63 ± 0.98 68.19 ± 0.66 16.43 ± 1.23 67.65 ± 1.12

100 23.03 ± 1.88 62.03 ± 1.45 22.46 ± 1.81 63.18 ± 1.55
200 33.73 ± 2.00 53.18 ± 1.64 34.63 ± 2.79 52.66 ± 2.58

MIR 50 21.81 ± 1.71 62.77 ± 1.44 22.89 ± 2.73 62.18 ± 3.08

100 30.11 ± 3.24 56.28 ± 2.82 31.18 ± 2.52 56.06 ± 2.64

200 42.79 ± 2.98 44.28 ± 2.94 43.78 ± 2.45 44.28 ± 2.08

CIFAR-10

Sampling Memory Reservoir DFB (our)
A5(%) ↑ F5(%) ↓ A5(%) ↑ F5(%) ↓

Random 200 23.84 ± 0.90 58.64 ± 0.64 24.31 ± 0.69 58.24 ± 0.82

500 29.59 ± 0.73 54.58 ± 1.13 31.09 ± 1.04 53.30 ± 0.92

1000 35.62 ± 0.99 48.42 ± 1.22 35.78 ± 1.52 47.95 ± 1.71

MIR 200 25.70 ± 0.98 57.67 ± 0.88 26.67 ± 0.95 56.40 ± 1.45

500 31.59 ± 0.10 52.23 ± 1.10 32.58 ± 0.83 50.53 ± 0.93

1000 38.27 ± 0.55 45.90 ± 0.96 39.51 ± 0.76 43.37 ± 1.74

6 Conclusion and future work

Experience Replay is one of the central methods of memory-based Continual
learning. It usually consists of two steps, sampling to and from the memory
buffer. In this work, we improve samples selection to the memory buffer in
a challenging Class-Incremental Online learning scenario, where we only have
access to information about the buffer and the current minibatch. Our results
show that even with random sampling from the buffer, the model performs
better when it rehearses on more diverse memory. We increase this diversity
by removing samples that have close neighbors by the cosine similarity of their
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embeddings. Finally, we have successfully demonstrated how our algorithm can
be combined with methods of samples selection from the memory buffer.

In the future, we would like to extend our work with a mechanism that
reduces the number of outliers in the memory buffer. We would also like to
investigate architectural modifications to create more organized representations.
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