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Abstract. We introduce the use of trainable feature extractors, based on
the Gabor function, into the interpretable machine learning domain. The
use of adaptive Gabor filters allows for interpretable feature extraction to
be learned automatically in a domain agnostic way, and comes with the
benefit of a large reduction in trainable parameters. We implemented the
filters into an image classification variant of learning vector quantization
We extend and compare the image classification variant of learning vector
quantization with adaptive Gabor filters and demonstrate the proposed
technique on VisTex color texture images. The adaptive Gabor filters show
promising results for interpretable and efficient color texture classification.

1 Introduction
A Gabor filter is a linear spatial filter often used as a feature extractor in tra-
ditional image analysis and pattern recognition tasks. Their response patterns
have been investigated and compared to receptive fields in the visual cortex
[1, 2, 3, 4], and Gabor filters are shown to be a good model for the structure of
simple cells in cats [2, 5]. For this reason, many attempts have been made to
incorporate Gabor filter-based feature extractors into machine learning pipelines
[6, 7, 8, 9]. Recently, it is stated that approximations of Gabor filters are almost
always found in the first layer of state-of-the-art convolutional neural network
(CNN) architectures [10]. Therefore, it appears that Gabor filters are ubiquitous
in high-performance image classification solutions, either directly or indirectly.

Due to the recent successes in applying CNNs to image classification tasks [11,
12, 13, 14] and their superior performance over traditional methods in domains
where lots of data is available, many machine learning practitioners have started
using such networks in a variety of settings. The power of neural networks comes
from the fact that they equip learnable feature extractors formed by the networks
themselves, cutting out the need of a costly human design process at the expense
of high computational costs and the need for a large dataset. However, since the
output of these networks is a composition of several layers, consisting of many
connected units (often totalling millions of elements), the resulting outputs are
often not directly interpretable.

To aid CNNs with the learning of robust and data-agnostic feature extractors,
Gabor filters were recently incorporated into the architectures directly [15, 16].
However, the outputs of the resulting model will still be difficult to interpret.
Learning vector quantization (LVQ) models with adaptive dissimilarities on the
other hand provide efficient transparent decisions while preserving classification
performance [17, 18, 19]. In this contribution we extend color image analysis LVQ
(CIA-LVQ) [18, 19] to incorporate adaptive Gabor filters. The resulting model
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b) Input imagea) Gabor filter c) Frequency response

Fig. 1: Visualization of Gabor filter (a) with θ = π
3 and λ = 5 convolved with

the RuG logo as input (b) and resulting frequency response (c).

greatly reduces the numbers of free parameters for optimization, while preserving
interpretation in form of class specific Gabor filter banks. Its performance is
demonstrated on Vistex color texture images and is comparable or superior to
the general convolution version. The code is available at https://git.lwp.

rug.nl/k.bunte/cialvq_luimstra.

2 Methods
2.1 Gabor Filter

A 2D real-valued Gabor filter often used in texture analysis [6] is defined as:

gΘ(x, y) = exp (−(x
′2

+ γ
2
y
′2
)/2σ2) cos (2πx

′/λ + ϕ) . (1)

where x, y denote the pixel positions, Θ = {θ, λ, ϕ, σ, γ} the set of filter param-
eters and for short x′ = x cos(θ) + y sin(θ) and y′ = −x sin(θ) + y cos(θ). The
Gabor filter response depends on the choice of parameters. In essence, θ denotes
rotation (orientation) with values between 0 and 2π. The λ parameter denotes
wavelength of the cosine factor with a respective domain of all real numbers
greater than 2, and σ determines the size. The ratio σ/λ denotes the spatial
frequency bandwidth b of simple cells as shown in Neurophysiological research:
σ/λ = 1/π

√
ln 2/22b + 1/2b − 1 =⇒ σ = λ/π

√
ln 2/22b + 1/2b − 1 and therefore should

not be specified directly [20]. ϕ ∈ [−π, π] denotes the phase offset of the cosine
factor and determines the symmetry. Finally, γ ∈ [0, 1] controls the degree of
deviation from circularity (spatial aspect ratio). Fig. 1a shows an example 2D
Gabor filter with Θ = {π/3, 5, 0, 2.4, 3/4} that excites in presence of diagonal lines
of an angle close to θ. Panel b and c depict an example input image and the
corresponding filter response, that highlight these diagonals.

2.2 Real-valued Color Image Analysis LVQ (RCIA-LVQ)

The real-valued Color Image Analysis LVQ (RCIA-LVQ) bases on the original
CIA-LVQ algorithm [18, 19] restricted to real-valued inputs rather than complex
values. We assume a dataset D consisting of three channel color patches (such
as RGB), as vectorized input samples xi ∈ Rp·p·3, with corresponding labels
yi ∈ {1, . . . , C} for the C class classification problem. Furthermore, a filter
bank Gj is initialized as sum of a fixed number of Gabor filters of different
parameterizations. The LVQ model consists of K ≥ C prototypes wj ∈ Rp·p

with j ∈ {1, . . . ,K} and their respective class label c(wj) ∈ {1, . . . , C}. A set of
K image descriptors rj : Rp·p·3 → Rp·p map the vectorized three channel input
image xi to a single “intensity” channel using an adaptive transformation matrix
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Ωj ∈ Rp·p×p·p·3 and then convolve the result with the filter bank Gj :

rj(xi) = xiΩT
j ∗Gj (2)

where ∗ denotes convolution, and j is the index of the associated prototype
wj . Eq. (2) presents the most complex version with each prototype possessing
a local adaptive transformation and filter bank. We furthermore implemented
less complex special cases, namely the global version in which all prototypes
share the same transformation Ω but local filter banks Gj and class-wise ones
Ωc and local Gj where c corresponds to the class of the respective prototype.
The dissimilarity between an image descriptor rj(xi) and a prototype wj is:

d(xi,wj) = ∥(rj(xi))2 − (wj)2∥2 . (3)

The class label of the closest prototype argminj(d(x
i,wj)) is used to classify

samples. For optimization of the RCIA-LVQ model parameters the following
cost function is minimized, for example with stochastic gradient descent:

L(D) =
∑
i

d(xi,wJ)− d(xi,wK)

d(xi,wJ) + d(xi,wJ)
, (4)

where wJ denotes the closest prototype with the same class label (c(wJ) = yi)
and wK the closest non-matching prototype (c(wK) ̸= yi). The learning rules
of the RCIA-LVQ can be derived analogous to CIA-LVQ [18, 19] by taking the
partial derivatives of L with respect to the parameters wL, ΩL and GL, where
L ∈ {J,K} refers to the closest matching and non-matching prototype:

∂L
∂wL

= −4 · ΓL
[((

rL(xi)
)2 − (

wL
)2) ·wL

]
,

∂L
∂ΩL

= 4 · ΓL
[((

rL(xi)
)2 − (

wL
)2) ∗ (GL)2 ·

(
xiΩT

L

)
xiT

]
,

∂L
∂GL

= 4 · ΓL
[((

rj(xi)
)2 − (

wL
)2) ·

(
xiΩT

L

)2] ·GL with

ΓJ =
2 · d

(
xi,wK

)
(d (xi,wJ) + d (xi,wK))

2 and ΓK =
−2 · d

(
xi,wJ

)
(d (xi,wJ) + d (xi,wK))

2 .

2.3 Adaptive Gabor RCIA-LVQ (GaRCIA-LVQ)

In the definition of RCIA-LVQ the filter bankGj does not remain a sum of Gabor
filters when updated, but instead becomes a generalized convolutional kernel. To
constrain the bank to ascertain the sum of Gabor filters our new bank is defined
as sum of adaptive Gabor filters parameterized by sets Θ̂j

l : Ĝ
j =

∑
l gΘ̂j

l
(x, y).

This effectively reduces the number of adaptable parameters in a filter bank Gj

from O(l · p2) to O(l · 5), where p denotes the width and height of the filter and
l denotes the amount of filters in the Gabor filter bank. It should be noted that
this specification has the additional benefit of being invariant to filter size as
an increase of filter size does not increase the number of adaptable parameters.
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We call this new version the Gabor RCIA-LVQ (GaRCIA-LVQ). Most of the

derivatives remain the same, but the one with respect to Ĝj changes. Instead
of updating the individual kernel weights the derivative is taken with respect to
the parameters of the sets Θ̂j

l . The partial derivative can be written as:

∂L
∂Θ̂L

lξ

= 4ΓL
[((

rL(xi)
)2 − (

wL
)2) ·

(
xiΩT

L

)2] · ĜL
l ·

∑
x,y

∂gΘ̂L
l
(x, y)

∂ξ
, (5)

where ξ ∈ {θ, λ, ϕ, b, γ} denotes the filter parameter with corresponding deriva-
tives:

∂g(x, y)

∂b
= g(x, y)λπ

√
ln 2
2

(x′2−γ2y′2)(2b+1 ln(2))
2σ3(2b−1)2

∂g(x, y)

∂ϕ
= −Ψ

∂g(x, y)

∂λ
= Ψ

2πx′2

λ2

∂g(x, y)

∂γ
= −g(x, y)

γy′2

σ2

∂g(x, y)

∂θ
= −Ψ

2πy′

λ
+

g(x′, y′)

σ2
(γ2 − 1) ,

where Ψ = exp
(
−x′2+γ2y′2

2σ2

)
sin

(
2π x′

λ + ϕ
)
.

3 Experiments and Results
In this section we compare and analyze the performance of the new adaptive
Gabor filter bank GaRCIA-LVQ to the RCIA-LVQ with static bank as well as
local and class-wise transformations and filters. The VisTex [21] database is a
collection of texture images and was created with the intention of providing a
large set of high quality textures for computer vision applications. The images
in VisTex do not conform to rigid frontal plane perspectives and studio light-
ing conditions and hence are considered representative of real world conditions.
Similar to [19] we use the same subset 29 images with size 128 by 128 pixels from
the groups Bark, Brick, Fabric and Food as exemplified in figure 2, in order to
make the performance directly comparable.

For evaluation the global training set of 29 images is randomly split into a
train set of 16 and hold-out test set of 13 images. Note that the latter only
serves for final evaluation and is not used for model training or selection. From
each image in the training set 200 patches of size 15 by 15 are extracted and
50 patches of the same size for the hold-out test set resulting in 3200 and 650
data samples respectively. We then further split the training set into 4 folds and

a) Bark b) Food c) Fabric d) brick e) Brick bank Gj

Fig. 2: a) - d) Four example images of the four classes used of the VisTex data
(size 15 by 15). e) Example of a learned Gabor filter bank for the Brick class.
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Table 1: VisTex performance results. Ω indicates which type of transformation
matrices are used and k describes the amount of prototypes. The final columns
denote the validation, train and test accuracy, respectively.

Algorithm Ω k Validation (µ± σ) Train Test

(Static) RCIA LC 3 80.1± 1.9 96.7 82.0
RCIA LC 1 80.0± 0.2 89.5 80.3
RCIA LC 3 83.1± 0.9 98.9 84.9
RCIA LC 5 84.8 ± 1.6 98.5 87.8
GaRCIA CW 3 79.3± 3.1 92.0 84.8
GaRCIA CW 3 83.8± 2.4 97.6 87.5
GaRCIA LC 5 82.0± 3.5 98.4 89.2

train the model for 50 epochs on three, while evaluating it on the remaining fold
for stratified cross-validation purposes. This gives us 4 scores that measure the
performance of the hyper-parameters on the validation set. As there are many
hyper-parameter combinations that are considered, we only report the top three
performing parameter settings for each algorithm as found on the validation set.

For comparison we keep the following hyper-parameters for the experiments:
learning rates for the prototypes, transformations and filter parameters are set
to 0.1, 0.01 and 0.05 respectively. In the stratified cross-validation the follow-
ing hyper-parameters are grid searched: the number of prototypes per class (1
through 5) and whether or not local (LC), class-wise (CW) or global (GL) Ω
matrices are used. In the case of the Gabor filter bank (static or otherwise) a

sum of 16 Gabor filters is used which are initialized using Θj
l = {θ, λ, 0, 2.4, 3

4}
with θ ∈ {0, 22.5π

180 , 45π
180 ,

67.5π
180 , π

2 ,
112.5π
180 , 135π

180 , 157.5π
180 } and λ ∈ {5, 5

√
2}. From an

empirical sensitivity analysis we found that small changes of θ resulted in unsta-
ble learning. Therefore, we exclude the θ parameter from adaptation and create
the filter bank using fixed and equally spaced θ values between 0 and 2π.

The results are summarized in Table 1. It is clear that the use of adaptive
filter banks is fruitful as all models adapting them outperform the version in
which it is kept static (first row). While the GaRCIA model has much less
parameters than RCIA, there are no obvious performance differences between
them on the validation and train set. Furthermore, the GaRCIA model performs
slightly better on the hold-out test set suggesting that the learned Gabor filters
improve generalization. A learned filter bank of the brick class, that excites to
horizontal and vertical lines often present in brick textures, is shown in Fig. 2e.

4 Conclusion
In this contribution we introduce the use of adaptive Gabor filters into the in-
terpretable machine learning domain by presenting the novel adaptive Gabor
real-valued color image analysis LVQ algorithm (GaRCIA-LVQ). The adaptive
Gabor filter extension typically reduces the number of parameters for optimiza-
tion, since each individual filter exhibits only 5 parameters as compared to the
general convolution that resembles the size of the patches considered. First
experiments with Vistex color texture images show promising results with the
adaptive filters outperforming the base RCIA-LVQ model, despite using much

65

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1. 
Available from http://www.i6doc.com/en/.  



less parameters and preserving the structure of Gabor functions in the filter
bank. The trained class-specific Gabor filters can be readily interpreted, and the
obtained filter parameters inspected with respect to their meaning for detected
structure of each class. In future work we will investigate different dissimilarities
based on weighted trainable combinations of class-specific color channel Gabor
responses and extensions to combined filters for more complicated structures.
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