ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1.
Available from http://www.i6doc.com/en/.

Graph Neural Networks for Propositional Model
Counting

Gaia Saveri®*? and Luca Bortolussi>

1- University of Pisa - Department of Computer Science
Largo B. Pontecorvo 3, 56127 Pisa - Italy

2- University of Trieste - Department of Mathematics and Geoscience
Via A. Valerio 12, 34127 Trieste - Italy

Abstract. Graph Neural Networks (GNNs) have been recently leveraged to solve
several logical reasoning tasks. Nevertheless, counting problems such as proposi-
tional model counting (#SAT) are still mostly approached with traditional solvers.
Here we tackle this gap by presenting an architecture based on the GNN framework
for belief propagation (BP) of [1], extended with self-attentive GNN and trained to
approximately solve the #SAT problem. We experimentally show that our model,
trained on a small set of random Boolean formulae, is able to scale effectively
to much larger problem sizes, outperforming state of the art approximate solvers.
Moreover, we show that it can be efficiently fine-tuned to provide good general-
ization results on different formulae distributions, such as those coming from SAT-
encoded combinatorial problems.

1 Introduction

Propositional model counting (#SAT), the task of computing the number of satisfying
assignments of a Boolean formula, is of relevant importance in computer science as it
arises in many domains, such as Bayesian reasoning and combinatorial designs. Never-
theless, #SAT has been proven to be #P-complete, thus computationally at least as hard
as NP-complete problems [2]. For this reason, state-of-the-art exact #SAT solvers are
not capable of handling industrial-size problems, and a number of approximate solvers
have been developed. On the other hand, there is an increasing interest in leveraging
machine learning to solve logical and combinatorial reasoning tasks [3]. Graph Neu-
ral Networks (GNNs) [4] fit well in this scenario as they carry inductive biases that
effectively encode combinatorial inputs, such as permutation invariance and sparsity
awareness. In this work we investigate whether GNNs can be meaningfully applied to
approximately solve the #SAT problem, an objective that, to the best of our knowledge,
is only tackled in [1]. To this end, we extend the architecture presented in [1], by aug-
menting the model with a self-attention mechanism. We experimentally show (code is
available at: https://github.com/GaiaSaveri/GNN-sharpSAT) that our
model, trained on a small set of random Boolean formulae, is able to scale-up to larger
problem sizes, outperforming state-of-the art approximate #SAT solver. Moreover we
describe a simple yet effective fine-tuning strategy, that allows the model to generalize
across diverse data distributions, with only a few tens of labeled formulae required.

Related Work. In [5] a graph neural network model is proposed to solve the weighted
disjunctive normal form counting problem (weighted #DNF). Moreover, a significant

509

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1.
Available from http://www.i6doc.com/en/.

body of work has been developed to learn how to solve N P-complete problems lever-
aging GNNs [3]. Among them, methods tackling the Boolean satisfiability problem
(SAT) are of interest for this work. In particular [6] is the most similar in spirit to our
method, as it leverages a GNN as end-to-end SAT solver.

2 Background

Belief Propagation and #SAT. Belief Propagation (BP) [7] is an approximate inference
algorithm for computing marginals of a probability distribution, exploiting the factor
graph arising from its factorization. Considering a discrete probability distribution over
variables V' = {x1,..., 2, } (below zzr(7,) 1s the set of variables each factor f; depends
on):

Pay,...,zn) = 2 [T filangn)s Z = Xoev ITjm filan)) (D

then BP computes an approximation of the factor and variable marginals (also called
beliefs) by iteratively passing messages between neighboring nodes on the factor graph.
Beliefs can be used to compute a variational approximation of the partition function of
the factor graph Z [8]. Propositional formulae, that w.l.o.g. we assume to be in Con-
junctive Normal Form (CNF), can be translated into a factor graph containing a factor
node for every clause and a variable node for every variable in the formula, and undi-
rected edges connecting variable nodes to the factor nodes of the clauses they appear in.
If we impose that a factor node takes value 1 for variable configurations that satisfy the
corresponding clause and 0 otherwise, then the partition function of this factor graph (Z
of Equation 1) counts, by construction, the number of models of the input formula (this
also allows us to distinguish between two formulae differing only for literals’ negation,
which in principle have the same factor graph representation). Such intuition enables
the adoption of probabilistic reasoning methods as approximate #SAT solvers [9].

Graph Attention Networks (GATs). GATs [10] are a type of GNNs endowed with a
self-attention mechanism, that allows the network to aggregate the information coming
from different nodes of the input graph putting a different weight on some entities,
and fade out the rest. This is done computing attention coefficients for all pairs of
neighboring nodes, and updating each node’s representation by a weighted combination
of the node embeddings and the above mentioned attention coefficients. To stabilize the
learning process, a multi-head attention is applied by replicating the operations of the
layer independently K times and aggregating the results with a feature-wise aggregation
function such as concatenation, sum or average.

3 Our approach: GAT for #SAT

The objective of this work is to tackle the #SAT problem using a GNN model as an
approximate solver. Our starting point is (one of the variants of) the architecture pro-
posed in [1]. This model, called Belief Propagation Neural Network (BPNN), gen-
eralizes BP by means of GNNs, taking as input the factor graph representing a CNF

510

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1.
Available from http://www.i6doc.com/en/.

SAT formula and giving as output an estimation of the logarithm of the factor graph’s
partition function Z of Equation 1. BPNN keeps the algorithmic structure of BP and
augments its message passing scheme by transforming, at each iteration, the messages
exchanged at the previous iteration using MLPs, before aggregating and sending them
to the neighboring nodes. Once the message passing phase is completed, a readout
phase is executed, which outputs an estimation In Z of the natural logarithm of the par-
tition function Z of the input factor graph, leveraging the network’s approximation of
variable and factor beliefs, computed as in standard BP.

3.1 Neural Belief Propagation with Attention

GNNs endowed with an attention mechanism are a promising research direction in the
neuro-symbolic computing field, as they might enhance structured reasoning and effi-
cient learning [3]. This is why we augment the BPNN architecture with a GAT-style
attention mechanism. We will refer to our architecture as BPGAT, as it puts together the
algorithmic structure of BP and the computational formalism of GATs. In BPGAT both
factor-to-variable (172;_,;) and variable-to-factor (17;_, ;) messages are aggregated using
a GAT-style multi-head attention mechanism. At iteration k + 1, for each variable-to-
factor message 771, , attention coefficients «;; for every factor node f; in the neigh-
borhood of a variable node x; are computed as in [10] (with W € Réxd being learnable
matrix and a € R2? the set of parameters of a single-layer feedforward neural network):
exp(LeakyReLU(a” [concat(Wﬁv,Ek_'z i ngk_)”)]))

2)
> keN(x,) €xp(LeakyReLU(a” [concat(Wm ¥ W™))))

i—j0 k—i

(k+1) _
@ =

Analogous computations are performed to obtain the attention coefficients for factor-
to-variable messages. Once the aggregation of the incoming messages is performed,
the new messages are computed as in standard BP. After 7T iterations, the same readout
phase of BPNN is executed, in order to obtain In Z,ie. an approximation of the natural
logarithm of the number of models of the input CNF SAT formula.

4 Experimental Evaluation

4.1 Experimental Setting

The model is trained for 1000 epochs to minimize the Mean Squared Error (MSE)
between the natural logarithm In Z of the true number of models of the input formula,
and the output of the model In Z. In order to compute attention coefficients, we used a
3-layer GAT network, having respectively 4, 4, 6 attention heads. For comparison, we
also implemented the BPNN model, using the parameters detailed in [1]. The number
of iterations 7" of the message passing scheme has been setto 5 !

The training dataset D = {(¢;,In Z;)} consists of a set of 1000 pairs of CNF
SAT formulae ¢; and the logarithm In Z; of their true model count. Such formulae

I These choices have been made after a set of preliminary and ablation studies, whose results can be found
in an extended version of our paper (containing also a mathematical formulation of the model), available
online at https://arxiv.org/abs/2205.04423.

511

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1.
Available from http://www.i6doc.com/en/.

are drawn from a distribution of random formulae built by uniformly sampling, for
every formula, the number of variables and the number of clauses (given the input
ranges (NVpmin, Mmaz) and (NCmin, NCmax), respectively). For each clause, a num-
ber k ~ 2 + Bernoulli(0.7) + Geometric(0.4) of variables are chosen, so that each
clause has 5 variables in average. The number of models for each generated formula
is obtained with the exact #SAT solver sharpSAT [11]. The dataset used for training
both BPGAT and BPNN has been generated using (nvpmin, "0maz) = (10,30) and
(NCmin, NCmaz) = (20, 50); this produced formulae having an average of 19.87 vari-
ables and 34.87 clauses. This is a relevant difference w.r.t. [1] in which training data
consist in a sample of formulae drawn from the same benchmarks used to test the ar-
chitecture (which might be more costly to obtain).

Fine-Tuning Protocol. To allow the model to extrapolate to data distributions different
from the one seen during training, without requiring a large amount of distribution-
specific labeled data, as weight initializer for fine-tuning towards new distributions we
use BPGAT trained for 500 epochs with the protocol and data described earlier in this
Section, fine-tuning it for additional 250 epochs, with only 250 labeled examples.

4.2 Results

The objective of our experiments is twofold: evaluating both BPGAT scalability and
generalization. As a baseline, we used ApproxMC [12], the state-of-the-art approx-
imate #SAT solver, which is a randomized hashing algorithm that provides Probably
Approximately Correct (PAC) guarantees.?

Scalability. In order to assess the scalability of our model, i.e. the ability to perform
well on formulae which are from the same data generating distribution than the ones
seen during training but of larger size, we generated several datasets following the pro-
cedure detailed in Section 4.1. Table 1 shows the statistics of the datasets used in this
testing phase, each containing 300 labeled instances. It is worth noting that all datasets
contain much larger formulae sizes than the one seen during training. Table 1 shows the
results obtained, in terms of Root Mean Square Error (RMSE) and Mean Relative Error
(MRE) between the true In Z and the output of the model In A , by BPGAT, BPNN and
ApproxMC. Remarkably, for all the datasets tested, BPGAT outperforms ApproxMC in
terms of MRE (although not in terms of RMSE). Such higher RMSE is a consequence
of few outliers with a large prediction error for BPGAT, while most of its predictions
are close to the ground truth labels, as certified by the consistently lower MRE.

Out-of-distribution generalization. The second set of tests we performed aims at eval-
uating the generalization capabilities of our model. The problem classes we perform
experiments with are both SAT-encoded combinatorial problems (k-dominating set,
graph k-coloring, k-clique detection) and network QMR (Quick Medical Reference)
problems taken from the test suite of [12]. As before, sharpSAT [11] is used to obtain

2Comparison with other guarantee-less counters such as [13] has been hindered by the lack of available
implementations, to the best of our knowledge.

512

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1.
Available from http://www.i6doc.com/en/.

Dataset Avg#var Avgi#cl BPNN BPGAT ApproxMC
Test 1 61.8 76.89 0.3140/0.004072 0.1276/0.001366 0.002025/0.001576
Test 2 60.43 143.61 1.3623/0.01786 0.3100/0.003201 0.2262/0.02003

Test 3 124.07 7526 0.3046/0.004131 0.1748/0.001471 0.1035/0.01134
Test 4 377.59 275.11 2.9112/0.01681 1.2061/0.007433 0.4275/0.04038

Table 1: Average number of variables, average number of clauses, of the datasets used to test scalability.
RMSE/MRE performance of BPNN, BPGAT and ApproxMC on the resp. datasets.

Dataset FT_BPGAT TS_BPGAT RF_BPGAT ApproxMC FT_BPNN

Network 0.2580/0.005271 1.9334/0.04887 14.2839/0.3608 0.07619/0.05403 0.3187/0.007469
Domset 0.5508/0.04252 1.7808/0.7125 11.9190/9.5070 0.08155/0.02856 1.0646/0.08392
Color 1.2110/0.1774 1.3430/0.2046 26.1898/5.9593 0.09426/0.04241 2.9254/0.8046
Clique 0.007834/0.002475 0.01773/0.007333 1.9625/0.8983 0.01113/0.04795 0.01201/0.004069

Table 2: RMSE/MRE performance of BPGAT and BPNN when fine-tuned for the specific data distribution
(FT_BPGAT and FT_BPNN, resp.) following the protocol described in Section 4.1, when trained on the
specific data distribution for 500 epochs, with 250 labeled examples (TS_BPGAT) and when trained on
random formulae (RF_.BPGAT) with the training protocol and the data generating procedures detailed in
Section 4.1 and ApproxMC.

the number of models for each formula. Statistics of the datasets used to test gener-
alization are as follows: formulae encoded from the k—dominating set, the k-coloring
and the k-clique detection problem have an average of 38.43, 65.63, 46.37 variables and
510.15,294.54, 1145.73 clauses, respectively; network QMR problems have a mean of
113 variables and 294.7 clauses. Each of the test set contains 300 previously unseen
formulae. To asses the effectiveness of our fine-tuning protocol we made several ex-
periments, whose results are summarized in Table 2. Interestingly, fine-tuning a model
pre-trained on small random Boolean formulae (FT_-BPGAT) gives better results than
the same model trained on the specific dataset (TS_BPGAT): this is relevant in terms of
efficiency of the architecture, as it requires only 250 labeled distribution-specific sam-
ples and 250 additional training epochs. Results of the comparison between our fine-
tuned model (FT_BPGAT) and ApproxMC are shown in Table 2. It is worth observing
that the performance of our architecture is comparable and in some cases outperform-
ing that of ApproxMC (especially in terms of MRE). For completeness, we report also
the performance of BPNN, fine-tuned with the same procedure as BPGAT. Overall, we
observe that the architectural improvements guarantee a sensibly better performance in
terms of scalability and generalizability over the BPNN model, likely because the at-
tentional layer allows the network to focus (i.e. to give more weight) on regions of the
input formulae which are more significant for the #SAT problem.

Data and Time-efficiency. The BPGAT architecture can be claimed data-efficient, as
it requires only 1000 CNF small random formulae for (pre)training. Generating such
training set requires ~ 5s with the procedure described in Section 4.1. About time
efficiency, once trained the BPGAT architecture is able to process (independently on
the size of the formulae), all test instances described in this work, in a maximum of 3s,

513

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1.
Available from http://www.i6doc.com/en/.

without leveraging GPU acceleration. This is much less than the time needed by the
exact solver sharpSAT (which takes on average 286s for an instance of the dataset Test
4 described in Section 4.1) and by the approximate solver ApproxMC with standard
parameters (which takes on average 200s for an instance of the same dataset).

5 Conclusions and Future Work

We presented BPGAT, an extension of the BPNN architecture presented in [1], which
combines the algorithmic structure of belief propagation and the learning paradigm of
graph attention networks. We conducted several experiments to investigate the scala-
bility and generalization abilities of our network, showing that it is able to achieve a
performance comparable to (and in some settings higher than) state-of-the-art approx-
imate #SAT solvers, albeit the lack of any theoretical guarantees on the quality of the
solution. Finally, we highlighted the efficiency of our model, both in terms of required
training data and of running time. As future research directions, we will analyze the via-
bility of extending BPGAT to tackle weighted conjunctive normal form model counting
(weighted #CNF) problems. In this scenario, a straightforward application of our model
would be that of approximate probabilistic inference on Bayesian Networks, which in
many cases (e.g. when solved using variational inference) comes without any statistical
guarantees.

References

[1] J. Kuck, S. Chakraborty, H. Tang, R. Luo, J. Song, A. Sabharwal, and S. Ermon. Belief Propagation
Neural Networks. In NeurIPS, 2020.

[2] L. G. Valiant. The Complexity of Enumeration and Reliability Problems. SIAM J. Comput., 8(3):410—
421, 1979. Publisher: Society for Industrial and Applied Mathematics.

[3] Y.Bengio, A. Lodi, and A. Prouvost. Machine learning for combinatorial optimization: A methodolog-
ical tour d’horizon. Eur. J. Oper. Res., 290(2):405-421, 2021.

[4] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The Graph Neural Network
Model. IEEE Trans. Neural Networks, 20(1):61-80, 2009.

[5] R. Abboud, 1. I. Ceylan, and T. Lukasiewicz. Learning to Reason: Leveraging neural networks for
approximate DNF counting. In AAAI, 2020.

[6] D. Selsam, M. Lamm, B. Bunz, P. Liang, L. de Moura, and D. L. Dill. Learning a SAT Solver from
Single-Bit Supervision. In /CLR, 2019.

[7] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1988.

[8] H. A. Bethe. Statistical Theory of Superlattices. Proceedings of the Royal Society of London. Series A,
Mathematical and Physical Sciences, 150(871):552-575, 1935.

[9] L. Kroc, A. Sabharwal, and B. Selman. Leveraging belief propagation, backtrack search, and statistics
for model counting. Ann. Oper. Res., 184(1):209-231, 2011.

[10] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. Graph Attention Networks.
In ICLR, 2018.

[11] M. Thurley. sharpSAT - Counting Models with Advanced Component Caching and Implicit BCP. In
SAT 2006, volume 4121 of LNCS, pages 424-429. Springer, 2006.

[12] M. Soos and K. S. Meel. Bird: Engineering an efficient cnf-xor sat solver and its applications to
approximate model counting. In AAAIZ, 2019.

[13] W. Wei and B. Selman. A new approach to model counting. In SAT, 2005.

514

