
Federated learning vector quantization for dealing
with drift between nodes

Valerie Vaquet1∗, Fabian Hinder1∗, Johannes Brinkrolf1∗, Patrick Menz2,
Udo Seiffert3 and Barbara Hammer1 †

1- Machine Learning Group
Bielefeld University, Bielefeld - Germany

2- Cognitive Processes and Systems, Fraunhofer Institute of
Factory Operation and Automation (IFF), Magdeburg - Germany

3- Compolytics GmbH, Barleben - Germany

Abstract. Federated learning is an efficient methodology to reduce the
data transmissions to the server when working with large amounts of (sen-
sor) data from diverse physical locations. When using data from different
sensor devices concept drift between the single sensors poses an additional
challenge. In this contribution we define a formal framework for federated
learning with concept drift and propose a version of federated LVQ dealing
with concept drift induced by different hyperspectral cameras. We evalu-
ate this approach experimentally and demonstrate its robustness to class
imbalance and missing classes.

1 Introduction

The application of machine learning systems proved successful in many areas in
recent years. Especially, when coupling these algorithms with great amounts of
data collected by sensors, processes can be either fully automated or improved
as humans would not be able to interpret this extent of sensor data. One par-
ticular relevant type of sensor technology is hyperspectral imaging [1, 2]. It is
measuring the reflectance of all kinds of substances in a wider range than humans
can perceive. As this offers the opportunity to observe patterns which cannot
be observed by humans, hyperspectral sensing is frequently used in quality con-
trol in food production and pharmaceutical applications, precision agriculture,
environmental analysis, water resource management, medical diagnosis, and art-
work and forensic document analysis [2, 3]. While the technology is promising
in many areas, one core challenge is a deficiency in inter-operability, e. g. even
if data is collected by sensors of the same model by the same manufacturer,
machine learning models do not necessarily transfer from one to another with-
out a serious decrease in accuracy. This especially hinders the broad usage of
this sensor technology since updating or retraining models for new sensors is a
cost and time consuming task, as new ground truth measurements need to be
performed. Recent work [4] analyzed and categorized the sensor shifts in hyper-
spectral imaging data and proposed an efficient yet simple method to eliminate
those given a balanced class distribution at each sensor node.
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Another more general challenge when working with extensive amounts of
sensor data which are gathered at different places or institutions is that great
loads of data need to be shared to create a model containing the information
from all sensors. In recent years considerable research was conducted on feder-
ated learning: Instead of sharing the data, locally inferred models are shared.
This way, the required communication bandwidth can be reduced and privacy
increased. Yet, one challenge of such schemes is that it cannot be guaranteed
that data are i.i.d. at the different nodes. This phenomenon is referred to as
concept drift in between the nodes.

In this work, we adapt federated learning principles to manage concept drift:
first, we propose a general framework for federated learning vector quantization
(fedLVQ) with concept drift. This extends the formalism presented in [5] such
that it also corrects drift when fusing the local models. We evaluate the frame-
work in a setting where hyperspectral sensor data is collected by different sensors.
In particular, we consider class imbalances and missing classes across the sensor
nodes and show that the proposed method outperforms regular fedLVQ as well
as a shift reducing preprocessing [4].

2 Formal Framework for Federated Learning with Concept Drift

Formally, federated learning constitutes a two-staged approach [6]: First models
hθi , parameterized by θi ∈ Θ, are trained locally for each dataset S1, . . . , Sn ∈
∪∞
N=1(X × Y)N . Then these models are combined to obtain a global model hθ

with θ = C(θ1, . . . , θn) using a fusion algorithm C. Only the parameters θi need
to be communicated, which is beneficial if restrictions on available bandwidth or
privacy concerns hold. Further, local training can easily be computed in parallel.
A learning algorithm A allows an exact federated learning scheme if there exists
a fusion algorithm C : ∪∞

n=1Θ
n → Θ such that the combination of trained models

is the same as training on combined data, i.e. the following diagram commutes

(Si)
n
i=1

∏
i A

��

�� S1 × · · · × Sn

A

��
(θi)

n
i=1 C

�� θ

If we can combine the models in a reasonable way, we say that S1, . . . , Sn are
compatible. One challenge is given if the data sets are incompatible, because their
underlying distributions Pi(X) or their posterior Pi(Y |X) are very distinct, such
that it is not clear how to combine the model parameters θi in a reasonable way.
We refer to setups where Pi(Y |X) �= Pj(Y |X) as concept drift (or drift for short).

We suggest to counter such effects by applying transformations T1, . . . , Tn to
the models, which remove the effect of the drift and allow fusing of otherwise
incompatible models. The fused model for the i-th node can then be computed
by applying the inverse transformation to the fused transformed model, i.e.

T−1
i ◦ C(T1(θ1), . . . , Tn(θn)).
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Parameterizing the transformation T : Ψ×Θ→ Θ, i.e. Ti = Tψi , we end up with
the following learning problem for the transformations, given a model loss L:

argmin
ψi∈Ψ

n∑
i=1

|Si|∑n
j=1 |Sj |

LSi

(
T−1
ψi

◦ C(Tψ1(θ1), . . . , Tψn(θn))
)
.

We refer to datasets as Ψ-compatible if there exist ψ1, . . . , ψn that make the mod-
els compatible. Further, we refer to them as Ψ-unique, if those transformations
ψi are uniquely determined (modulo global operations).

3 Federated Learning Vector Quantization for Hyperspectral Data

Learning Vector Quantization (LVQ) models [7] constitute a prominent class
of (multi-class)-classification models on R

d that are particularly well compati-
ble with horizontal federated learning [5], i.e., all features but not necessarily
all classes are available. A LVQ-model h is parameterized by a set of w la-
beled prototypes W = {(wj, c(wj)) ∈ R

d × {1, . . . , c} | j ∈ {1, . . . , w}},
which induce a winner takes all classification, i.e., h(x) = c(wl) with l =
argminj∈{1, ..., c} d(wj , x). A generalization is obtained by combining the clas-
sical LVQ with (local) metric learning, leading to Local generalized matrix LVQ
(LGMLVQ), which uses a distinct matrix Λj for each prototype wj which in-

duces prototype specific distance function: dΛj (x, wj) = (x−wj)
T
Λj(x−wj).

Positive semi-definiteness of Λj is guaranteed by choosing Λj = Ωj
TΩj [7, 8].

Assuming that we use exactly one prototype per class, i.e. c(wk) = k, and
that there is no real drift, i.e., Pi(Y | X) = Pj(Y | X), combining LVQ models

becomes particularly easy [5]: Denoting by w
(i)
k the prototype of class k used by

the model trained on Si we obtain the fused prototypes as the weighted mean:

wk =

n∑
i=1

|S(k)
i |∑n

j=1 |S(k)
j |

w
(i)
k , (1)

here S
(k)
i ⊂ Si is the sub-dataset of all datapoints of class k. Likewise, for

LGMLVQ we obtain the fused relevance matrix as

Λk =

m∑
i=1

|S(k)
i |∑m

j=1 |S(k)
j |

Ω
(i)
k

T
Ω

(i)
k ∀ k ∈ {1, . . . , c}. (2)

Notice that this corresponds to the weighted mean of the local distance functions
of the models. A computationally efficient realization to construct the fused
model relies on Schur’s Algorithm which allows us to find Λj = Ωj

TΩj .
To deal with drift between the separate datasets we rely on a suitable trans-

formation: We restrict to the case discussed in [4], namely hyperspectral data,
where it is reported to be sufficient to consider translations of the input data.
Thus, we choose Ψ = R

d and Tv((wi,Ωi)
c
i=1) = (wi + v,Ωi)

c
i=1. Further, we

assume that there is one prototype per class. In this case Ψ-consistency can be
characterized as follows:
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Theorem 1. Let G be the graph with a node for each dataset Si and an edge
(i, j) ∈ E(G) if and only if Si and Sj share a class. The following holds:

(i) Assume class wise relevance matrices, i.e., Ω
(i)
k = Ω

(j)
k for all nodes i, j

and prototypes k. If for every edge (i, j) ∈ E(G) there exists vectors vij such

that w
(j)
k − w

(i)
k = vij all classes k observed in Si and Sj, and the sum along

every cycle C ⊂ G vanishes, i.e.
∑|C|−1
i=1 vCiCi+1 = −vC|C|C1 , then there exists

a global model (wk,Ωk)k and shifts v1, . . . , vn ∈ R
d such that w

(i)
k = wk + vi for

all i and k. (ii) If G is connected, the global model (assuming it exists) and the
shifts are uniquely determined up to a single, global shift. (iii) If G is connected,
the global model (assuming it exists) can be computed based on any spanning tree
(up to global shift). If G is a tree, the transfer vi can be computed by choosing a
root with vroot = 0 and then computing the remaining vi along the paths.

We omit the proof due to space limitations. The theorem yields an algorith-
mic solution as follows: first, we build the graph G and compute a spanning
tree TG ⊂ G. For each node i and each class k, we compute the mean vector

μi,k = μ(S
(k)
i ). If distributions are shifted versions of each other, i.e. parameters

are Ψ-compatible, mean values provide sufficient information for a full model
[9]. Similar to the data, means are shifted in accordance to the distribution
shift, i.e., μi,k − μj,k = vi − vj for all i, j, k. Thus, if we choose a root r ∈ TG
and set vr = 0 we can compute the vi inductively, vj denoting its parent

vi =

∑N
k=1 1min{|S(k)

i |,|S(k)
j |}≥1

(μi,k − μj,k)
∑N
k=1 1min{|S(k)

i |,|S(k)
j |}≥1

+ vj . (3)

Notice that this procedure also compensates for class imbalances: If |S(k)
i |/|Si| 	

|S(k)
j |/|Sj| then the influence of μik on μ(Si) is much stronger than the influence

of μjk on μ(Sj) so that μ(Si) − μ(Sj) �= μik − μjk. On the other hand, if
we sample uniformly from each class we have μik − μjk = vi − vj assuming
Pi(Y |X + vi) = Pj(Y |X + vj).

4 Experiments

Data The models are evaluated on a dataset of hyperspectral signatures of Ara-
bica, Robusta and immature Arabica coffee beans. The data was collected by
three different hyperspectral cameras with slightly different measurement char-
acteristics. The sensors measure 256 to 288 spectral bands in the wavelenghth
area between 950 nm and 2500nm. To ensure the same bands are considered
for all nodes interpolation and subsampling to 50 features is performed [4]. Ad-
ditionally to the three sensors, two additional artificial ones are simulated by
adding an offset (as in described in [4]).

Set-Up We consider federated LVQ (FED) proposed in [5] and the weighted ver-
sion (wFED) defined in Eqs. (1) and (2) as baselines not accounting for drift. Be-
sides, we consider both models with offset elimination (FED+OE, wFED+OE)

466

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1. 
Available from http://www.i6doc.com/en/.  



Sensor node Si S0 S1 S2 S′
2 S′′

2

Minority Classes 2 0 0,2 1,2 0,1
Missing Classes 0 1 2

Table 1: Experimental setup:
minority/missing classes for each
sensor

raw data offset elim. drift fusion

sen. wFED wFED wFED

0 0.795 (0.0430) 0.777 (0.0367) 0.826 (0.0506)
1 0.802 (0.0426) 0.751 (0.0274) 0.819 (0.0508)
2 0.822 (0.0440) 0.696 (0.0612) 0.816 (0.0505)

Table 2: Results of the experiment with
missing classes
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Fig. 1: Results of the experiment with unbalanced classes. Lighter colors are for
FED and the darker ones for wFED and all three scenarios of offset elimination.

as proposed in [4] as a drift eliminating pre-processing. Additionally, we evaluate
the proposed technology which accounts for drift by correcting the prototypes
as defined in Eq. (3), on top of both models (drift-FED, drift-wFED).

We evaluate two different settings. First, we evaluate how well the different
methods cope with imbalance in the different sensor nodes. For this purpose, we
reduce the samples of one or two minority classes from all available samples to
a fraction of 5%. In a second experiment, one class is missing completely. The
minority and missing classes for the different sensors are summarized in Table 1.
We apply a 10-fold cross validation. Testing is done on a balanced test fold.

Results The results for the experiments with imbalanced data are documented
in Fig. 1 and Table 3. In case the data is balanced (imbalance=1) all implemen-
tations accounting for the sensor shift perform better than the baselines FED
and wFED. For increasing imbalance the accuracy for all variants decreases.
However, we report a faster decline for the variants with offset elimination than
for the novel method. Overall, as expected the weighted fusing function outper-
forms the standard fusing in presence of class imbalance.

Table 2 summarizes the results of the experiment with missing classes. As
similar results for the weighted and regular version result if classes are balanced,
we only report the results for the weighted version. In this scenario drift-wFED
performs best again. We report worse results for the versions with offset elim-
ination than for raw data. This is expected as the offset cannot be computed
reliably if different classes are available at different nodes.
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raw data offset elimination drift fusion

imb FED wFED FED wFED FED wFED

1 0.837 (0.0442) 0.836 (0.0447) 0.867 (0.0129) 0.866 (0.0135) 0.868 (0.0100) 0.865 (0.0112)
0.8 0.827 (0.0485) 0.824 (0.0504) 0.832 (0.0462) 0.826 (0.0496) 0.857 (0.0176) 0.857 (0.0173)
0.6 0.807 (0.0532) 0.810 (0.0571) 0.787 (0.0678) 0.805 (0.0584) 0.814 (0.0404) 0.834 (0.0345)
0.4 0.729 (0.0571) 0.771 (0.0493) 0.706 (0.0535) 0.761 (0.0590) 0.779 (0.0601) 0.809 (0.0485)
0.2 0.493 (0.0567) 0.595 (0.0545) 0.541 (0.0526) 0.594 (0.0570) 0.548 (0.0486) 0.637 (0.0481)
0.05 0.584 (0.0453) 0.582 (0.0425) 0.569 (0.0447) 0.549 (0.0482) 0.612 (0.0313) 0.635 (0.0452)

Table 3: Results of the experiments with increasing class imbalance

5 Conclusion

We proposed a general formalism for federated learning with concept drift across
nodes via adapting a transformation. As a special instantiation we considered
federated LVQ and intensity shift as occur in hyperspectral data. In our ex-
periments we found that while the federated LVQ models are already robust to
sensor shifts, the proposed method can improve the performance. Besides, we
demonstrated that it is more robust to class imbalance than other drift elimi-
nating preprocessing schemes and showcased that it can handle the presence of
different classes at different sensor nodes.
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