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Abstract. Sparse pooling methods for graph neural networks typically
perform graph reduction by keeping only the top-k vertices according to
an adaptive scoring function. Although fast and scalable, these methods
destroy the relational information of the graph and possibly make it dis-
connected. EdgePool is one of the few sparse alternatives that preserve
the connectivity of the input graph by performing a series of edge contrac-
tions according to an adaptive scoring of the edges, but it has the drawback
of being sequential and not scalable on large scale graphs. In this paper we
show that EdgePool can be efficiently computed adapting a well-known
parallel algorithm from literature, and we also propose a novel, parallel al-
ternative that leverages on an adaptive scoring function of the nodes. We
test both methods on standard benchmark datasets, showing that they
generally outperform other sparse pooling methods from the literature.

1 Introduction

Graph neural networks (GNNs) [1] can be designed to reduce the input graphs by means

of pooling mechanisms, generally placed after one or more layers of graph convolution.

The irregularity of graphs does not allow for a trivial definition of down-sampling

as the one used for, e.g., audio signals, images, or voxel data. This has led to a

multitude of different definitions of pooling for GNNs, that can be roughly divided

into two classes: dense and sparse methods. Dense methods, like DiffPool [25]

or MinCutPool [2], adaptively compute soft-assignments of the vertices to a fixed

number of clusters, which is in general defined as a fraction of the average graph size

in the training set. They require up to O(rn2) space to generate the soft-assignment

matrix, with r ∈ (0, 1) and n is the number of vertices, which can be prohibitively

high for large scale graphs. Sparse methods, instead, are pooling mechanisms that are

able to reduce the graph in linear space w.r.t. the number of vertices or edges. Among

them, there are vertex selection methods, such as TopKPool [11], SAGPool [15],

ASAPool [19], and PANPool [17], that adaptively assign a score to every vertex,

using different kinds of neural networks depending on the model, and then keep only

the top-k ones, with k = ⌈rn⌉, and drop all the other vertices. Although fast and

scalable, this kind of methods may drop, along with the vertices, important relational

information and connectivity properties. EdgePool [8] is a sparse method that does

not have these drawbacks, as it performs graph reduction by iteratively contracting

the edges, following an ordering defined by adaptive scoring functions, unless they are

incident to an already contracted edge, until no other edge is contractable. Although

not stated in the paper, this method is equivalent to finding and contracting a maximal

matching of the graph, which is a common coarsening step already adopted in multi-

level graph partitioning [13], spectral clustering [7], spectral reduction [16], and graph

∗I would like to thank Davide Bacciu and Alessio Conte for their useful suggestions.

515

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1. 
Available from http://www.i6doc.com/en/.  



drawing [22]. In this paper we show how the well-known maximal matching algorithm

of Blelloch et al. [3] can be exploited to parallelize both EdgePool and a novel vertex-

scoring variant that acts as a intermediate step between vertex-selection methods and

EdgePool.

2 Edge pooling via parallel maximal matching

Notation and preliminaries. We represent a graph with G = (V,E), where V =

{1, . . . , n} and E ⊆ V × V are, respectively, the vertex and the edge sets of G, with

|E| = m. Given U ⊆ V , we denote with G[U ] the subgraph of G induced by the

vertices in U . We represent with A ∈ Rn×n the (symmetric) adjacency matrix of a

graph and with X ∈ Rn×f its feature matrix, whose rows represent the feature vectors

of the vertices. We denote with N(v) the neighbors of v ∈ V (N [v] if inclusive) and,

with a slight abuse of notation, we will also denote with N(e) the neighbors of an edge

e = uv ∈ E, that is, the set of edges incident to u or v. A matching M ⊆ E is a set

of edges such that any two edges in M share no vertices. A matching is maximal if

any edge in E \M has a neighboring edge in M . Contracting an edge uv ∈ E means

replacing u and v with a single vertex incident to all the edges in N(uv). A ranking

is an injective function π : S → N mapping any element in the set S to its position

among the other elements with respect to a given ordering.

Ranking the edges by their scores. Diehl et al. [8] proposed an edge contraction pooling

method, EdgePool, which works as follows: for every edge uv ∈ E, compute its score,

s⃗uv = σ(w⊤[xu,xv] + b), where w ∈ R2f and b ∈ R are parameters of the scoring

function, and σ is an activation function, which the authors set to tanh or softmax,

the latter evaluated over every vertex’s neighborhood. Then, the graph is reduced

by iteratively contracting the edge with highest score whose vertices have not already

been contracted. The feature vectors of the merged vertices is then obtained with

xuv = s⃗uv · (xu + xv). Notice that weighting (or gating) the feature vectors by the

edge’s score is necessary to make the scoring function end-to-end differentiable.

The process of greedily inserting an edge in the matching following a fixed ordering

is known as lexicographically-first maximal matching [6], a problem for which Blelloch

et al. [3] proposed a parallel algorithm, that we restate in Algorithm 1. Since the scores

do not change after the selection of an edge, we can parallelize the computation of the

set of edges extracted by EdgePool by means of this algorithm. To do this, we first

have to make the edge scores invariant to their orientation, as Algorithm 1 assumes

the graph to be undirected. We obtain this by computing the undirected score as

suv = max(s⃗uv, s⃗vu). (Clearly, the score of an edge selected by EdgePool is equal to

its undirected score, hence this modification as no impact on the final result.) Finally,

we compute the ranking of the edges based on their undirected score, by sorting them

in parallel in non-increasing order of s.

Ranking the edges by the score of their vertices. The previous formulation has the

drawback of using the score as a gating function only for the matched edges, while

unmatched ones will bypass both the reduction and the scoring function. This may

cause a form of “survivorship bias” in the selection phase: rightfully selected edges

(i.e., with a high score) will produce a low gradient, hence a marginal correction of the

scoring function, while wrongfully excluded ones (i.e., edges that should have deserved

a higher score) will be detached from the computation graph, causing their score not
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Algorithm 1 Parallel greedy maximal matching (MM) algorithm, from Blelloch et al. [3].
Given a graph G and an edge ranking π, returns a maximal matching in G.

1: function MM(G = (V,E), π : E → N)
2: if |E| = 0 then return ∅
3: S ← {e ∈ E | ∀f ∈ N(e). π(e) < π(f)}
4: R← V \

⋃
uv∈S {u, v}

5: return S ∪MM(G[R], π)

Algorithm 2 Parallel greedy vertex-ordered maximal matching (VOMM) algorithm. Given
a graph G and a vertex ranking π, returns a maximal matching in G.

1: function VOMM(G = (V,E), π : V → N)
2: π̂ ← maxv∈V π(v)
3: Define π′ : E → N as π′(uv) = min(π̂ · π(u) + π(v), π̂ · π(v) + π(u))
4: return MM(G, π′)

being corrected. Here we propose a variation of EdgePool that computes a score for

every vertex, that will also gate its feature vector regardless of the matching outcome.

For every vertex v ∈ V , its score is computed as sv = σ(w⊤xv + b), where w ∈ Rf

and b ∈ R are parameters of the scoring function, and σ is the sigmoid activation

function. All features are gated by the score of their vertices, i.e., x′
v = svxv, while

features of matched edges are also summed together, i.e., x′
uv = suxu + svxv. This

reduction can also be expressed in matrix notation as X′ = PX, where P ∈ Rc×n is

a partition matrix having as only non-zero element Pκuu = su, where κu is the index

assigned to the cluster of u, which is either a singleton cluster (u has not been matched)

or a two-elements cluster (u is matched with an adjacent vertex). The coarsened

graph is obtained following the reduction scheme typical of Nyström methods [16],

i.e., A′ = P∓AP+, where P+ denotes the Moore-Penrose pseudo-inverse of P, and

P∓ the transpose pseudo-inverse (notice that, being a partition matrix, P is easily

pseudo-invertible [see 16, Proposition 6]).

Regarding the matching algorithm, in our EdgePool variation we will iteratively

select the edges in a way to minimize the total score of the matched vertices (or,

equivalently, to maximize 1 − s). This will cause low scoring vertices to be merged

together, while leaving the more salient ones possibly unmatched, thus mimicking the

selection procedure common in top-k pooling methods [11, 15, 19, 17].

The problem of finding the matching maximizing a positive weight on the vertices

(or, in our case, a score) is known as maximum vertex-weight matching (MVM) [21].

In Algorithm 2 we propose a parallel lexicographically-first variant of the greedy MVM

algorithm of Halappanavar [12, HybridHalf], that we use to compute the matching

by ranking the vertices in non-decreasing order of s.

Theoretical and complexity analysis. By Lemma 5.3 of [3], we know that, for a random

ordering on the edges, Algorithm 1 requires O(m) work and O(log3 n) depth with

high probability. Given a random scoring of the edges, we can compute their ranking,

needed by Algorithm 1, in O(m logn) work and O(logn) depth using, e.g., parallel

quick-sort [4]. Hence, the computation of the matching needed by EdgePool is indeed

parallel on average. The complexity of Algorithm 2 is a bit more involved, since the

edge ranking computed in Line 3 of Algorithm 2 is no longer random (e.g., low ranking

edges will be connected to the low ranking vertices). Nevertheless, we can show that its

depth complexity is still poly-logarithmic on average by leveraging on the theoretical
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framework of Blelloch et al. [3] (the formal proof is omitted for lack of space).

Theorem 1. For a random ordering on the vertices, Algorithm 2 can be implemented

to run in O(m) total work and O(log3 n) depth w.h.p.

Regarding the matching quality, we can also show that Algorithm 2 becomes equiv-

alent to the sequential MVM algorithm of Halappanavar [12, HybridHalf] when the

vertices are ranked in non-increasing ordering of a given weighting function w : V →
R+. Hence, the analysis of Halappanavar [12] also holds for Algorithm 2 and we have

the following proposition.

Corollary 2. Let G = (V,E) be a graph and π : V → N be the ranking of its vertices

in non-decreasing order of a given weighting function w : V → R+. Then, Algorithm 2

will compute a 1
2 -approximation to a maximum vertex-weight matching in G.

3 Experiments

We tested both EdgePool and our variation, referred to as EdgePoolV2 hereafter,

on DD [9], GITHUB [20], REDDIT-B and -5K/12K [24]. All datasets were divided in

training (70%), validation (10%), and test (20%) sets using a (fixed) stratified split.

In Table 1 we show the average accuracy obtained by different pooling methods on

the selected datasets. All models have the same architecture: 3 GNN layers, option-

ally interleaved by a pooling layer, followed by a global max/sum pooling, and a final

2-layer MLP. For every pooling configuration we performed a grid-search model selec-

tion on the validation set, with a base search space common to all methods (learning

rate in {10−3, 10−4}, hidden units and batch size in {32, 64, 128}, and GNN layer in

{GCN [14], GIN [23], and GATv2 [5]}), extended with a space specific to the pooling

methods (reduction ration in {0.5, 0.2, 0.1}, except for EdgePool and EdgePoolV2,

that required no hyper-parameter tuning). For PANPool we fixed the GNN layer to

PANConv [17], which was required by the pooling layer, and added instead the path

length hyper parameter in the search space ({1, 2, 3}). The results in Table 1 are

obtained using the best configuration found, and averaged among 10 runs of retraining

(on the training set, with early stopping on the validation set) and prediction (on the

test set) with 10 different random initializations of the model parameters. All the mod-

els were implemented using the PyG library [10], where all pooling layers were readily

available. We implemented EdgePool and EdgePoolV2 to allow their computation

to run entirely on GPU, using the parallel algorithms defined in Algorithms 1 and 2

and discussed in Section 2. On a side note, we report that our implementation is not

only dramatically faster1 than the one already available on PyG when running on GPU

(averagely 60× faster in computing a batch of 128 graphs from REDDIT-12K), but

also sensibly faster on CPU (resp. 5× faster).

We can see from the results in Table 1 that EdgePool and EdgePoolV2 per-

form almost on par on all the selected datasets, with results within their respective

standard deviation ranges, with the exception of REDDIT-12K, where EdgePool per-

form significantly better than EdgePoolV2. It is evident instead how edge contraction

methods are superior with respect to vertex selection variants, with an increment of

more than 5 points of accuracy on REDDIT datasets. We can also see that the baseline

1On a machine with a Intel i7-4790K CPU, 32GB of RAM, and a Nvidia GTX1060 GPU,
with 6GB of on-board memory.
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Pooling DD RDT-B RDT-5K RDT-12K GITHUB

None 75.51± 1.07 78.40± 8.68 48.32± 2.38 45.04± 6.63 69.89± 0.28

Graclus [7] 75.17± 2.11 84.05± 5.81 43.22± 12.24 43.08± 9.32 67.64± 0.57

TopKPool [11] 74.92± 2.03 81.10± 3.82 45.28± 3.88 38.55± 2.35 65.93± 0.45

SAGPool [15] 73.26± 2.26 84.90± 3.94 46.29± 5.61 42.30± 3.70 64.29± 5.70

ASAPool [19] 73.73± 2.18 78.37± 5.22 39.53± 7.76 39.14± 3.58 66.98± 0.96

PANPool [17] 73.26± 1.94 77.44± 4.95 46.04± 3.78 40.97± 3.02 62.48± 2.84

EdgePool (tanh) 75.42± 1.41 87.33± 1.28 52.39± 1.11 47.20± 0.91 63.20± 4.76

EdgePool (softmax) 75.13± 2.07 86.53± 1.25 40.84± 8.32 43.08± 7.18 69.17 ± 0.73

EdgePoolV2 77.29± 1.63 86.80 ± 6.16 52.27 ± 1.21 46.30 ± 0.95 67.25± 0.58

EdgePoolV2 (σ◦N ) 75.04± 1.62 84.55± 2.60 49.28± 1.85 45.43± 6.69 66.88± 4.75

EdgePoolV2 (U) 75.59 ± 2.15 81.97± 3.66 43.60± 7.47 45.82± 0.87 66.54± 2.78

Table 1: Classification accuracy (mean ± std) in standard benchmark datasets. Values

in bold/italic highlight the best two results on each dataset.

with no pooling layers performs generally better than vertex selection based methods

but sensibly worse than EdgePool and EdgePoolV2, except on GITHUB, where

it obtained the best result. Following the experimental evaluation of Mesquita et al.

[18], we also compared our method with other two baselines that generate random

vertices scores using a uniform distribution (U(0, 1)) and a logit-normal distribution

(σ(N (0, 1))). These baselines obtained a comparable result only on the smallest dataset

(DD), but showed not to be as effective as the one using a learned scoring function.

Still, both on GITHUB and DD the difference in terms of average accuracy is marginal,

proving that edge-based coarsening methods are powerful and reliable in general.

4 Conclusions

We presented a parallel implementation of EdgePool that leverages on well-known

reduction techniques borrowed from graph theory, allowing its deployment on graph

machine learning pipelines for fast end-to-end training and prediction on GPU. We also

presented a novel variant that, differently from the former method, contracts the edges

attached to negligible vertices according to a learned scoring function, following the

same intuition of top-k methods for graph pooling but, at the same time, keeping the

graph connected, thus avoiding one of their main disadvantages. Finally, we empirically

showed that edge-contraction methods are generally superior to vertex-selection ones

on several graph classification tasks, thus proving them to be a strong and reliable

choice for graph pooling.
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