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Abstract. The binary encoding of real valued inputs is a crucial part of
Weightless Neural Networks. The Linear Thermometer and its variations
are the most prominent methods to determine binary encoding for input
data but, as they make assumptions about the input distribution, the
resulting encoding is sub-optimal and possibly wasteful when the assump-
tion is incorrect. We propose a new thermometer approach that doesn’t
require such assumptions. Our results show that it achieves similar or
better accuracy when compared to a thermometer that correctly assumes
the distribution, and accuracy gains up to 26.3% when other thermometer
representations assume an unsound distribution.

1 Introduction

Weightless neural networks (WNNs) are a type of neural model that utilizes a
random access memory (RAM) to determine neuron activation, as opposed to
weights and dot products commonly used in modern deep learning approaches.
Because it only uses lookup tables, instead of multiply and accumulate operations
which are comparably expensive, they can offer much lower latencies and energy
costs [1], making them an attractive solution, especially for usage on edge, and
it has been explored in various applications resulting in simple implementations
and real-time performance [2, 3, 4, 5].

As using RAMs implicitly requires inputs to be binary, the encoding of real
valued inputs is a crucial part of a WNN model and a naive approach can
be detrimental to learning [6]. The literature presents many binary encoding
techniques [6], with the linear thermometer [7] being the most prominent one.
The linear thermometer works by encoding the real value inputs in unary code,
under a uniform distribution assumption. A variation of the linear thermometer
technique was proposed in [8], where different distributions were used as priors,
such as a normal distribution, allowing for an increased resolution of information
near the mean of the distribution, showing a significant increase in accuracy for
the problem at hand. The major problem with this approach is the need to know
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the input distribution in advance, or it may not fit the data well, giving increased
resolution to regions where it is not needed, and lower resolution where a higher
resolution would be beneficial. With this in mind, we proposed the distributive
thermometer, a thermometer variation wherein it is not necessary to know the
input distribution in advance, but instead use the training data to determine
regions of high resolution. The results show this approach achieves greater and
similar accuracies to thermometers using prior knowledge about the distribution
and a significant gain in accuracy compared to when those assumed priors are
incorrect.

2 Background

2.1 WiSARD

WiSARD (Wilkie, Stoneham and Aleksander’s Recognition Device) [9] is the
most adopted WNN, proposed as a multi-discriminator classifier that is able
to recognize similar patterns in binary input. WiSARD represents each class
with a discriminator, each of which is composed of multiple RAMs. Each dis-
criminator’s RAM is addressed by a unique subset of the binary input. This
subset, called the mapping, is chosen pseudo-randomly. A subset may be the
same between discriminators but must be unique within each one. During train-
ing, a sample is presented to its corresponding discriminator, and the address
designated by each binary subset is applied to the corresponding RAM, setting
its value to 1. On inference, the binary pattern is presented to all discrimina-
tors, and the addressed content of each discriminator’s RAMs is summed. The
discriminator that yields the highest response is the output class of the model.

Over-fitting happens within the WiSARD model when too much training
data is given, or when the size of the binary subset is too small, causing most of
the RAMs contents to be set to 1. To solve this, the bleaching tiebreaker tech-
nique [10] was proposed. It works by changing the binary value of the RAMs
contents to a counter that increments as the same subset is repeatedly presented,
and adding a new variable to the model, denominated bleaching-threshold, to be
used during inference. On inference, the output of a RAM is 1 if the addressed
counter is greater than the bleaching-threshold and 0 otherwise. For each sam-
ple during inference, the value of the bleaching-threshold is set to 0, and if the
model outputs a draw between discriminators, the bleaching-threshold is incre-
mented and the classification happens again. This process continues until no
draw happens, or until all discriminators output is zero.

2.2 Encodings

Proper binary encoding of real valued inputs is a crucial part of a WNN model,
and a naive approach is detrimental to learning. As WiSARD learns from simi-
lar patterns in data, making a certain number of bit flips in the encoded input
must directly correspond to a similar change in their actual values as well [6].
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With this in mind, next, we will examine some competing approaches, namely
Threshold, Binary Representation, and Hamming Code, and then the leading
ones in the state of the art, namely Thermometer, Gaussian Thermometer, and
Thermometer with different distribution assumptions.

Threshold: This binarization is the most simplistic way of binarizing an
input. It assigns a single bit to a feature by checking if it’s above or below a
predetermined value (i.e., threshold). It was the binarization used in the early
days of WiSARD with great success in datasets like MNIST, but it fails when
applied to real valued data, as a significant loss of information is implied.

Binary representation: It is simply using the input binary representation
(i.e., integer or floating-point). Although this seems like a good representation to
use, it is not a binarization scheme that is appropriate for the WiSARD model,
as a single bit flip can yield a large change in value, instead of a close one, be-
cause not all bits in the representation convey similar weights [6].

Hamming code: It encodes the input using Hamming code. It has the
property that adjacent values are 1-bit flip apart, being a better candidate for
the WiSARD model than the Binary Representation, but it still does not satisfy
the condition of local smoothness, as Hamming Code does not satisfy that N
distance values are N bit flips apart, rendering it unsuitable for the WiSARD
model as well.

Linear thermometer: It encodes an input using a unary code, satisfying
the N flip condition. Given the number of thermometer bits B, it splits the input
space uniformly into B+1 buckets, just like a histogram plot, and assigns the
unary code to the input based on which bucket it belongs [7].

Gaussian thermometer: It encodes data in a similar fashion to the ther-
mometer, but instead of assuming a uniform distribution in the input space, it
assumes a normal distribution. It calculates the training data mean and stan-
dard deviation, and then divides the Gaussian curve into B+1 regions of the
same probability, assigning a unary code to each input based on the region it
belongs to. This technique provides increased resolution for values near the cen-
ter of the curve [8].

Other distributions thermometer: Different distributions can also be
used alongside the thermometer as an assumption or a prior about the input
data. It works by approximating the desired distribution using the training
data, and then splitting it into regions of equal probability, just like the gaussian
thermometer, and then assigning a unary code to each input based on the region
it belongs to. In the experiments section, we utilize an exponential thermometer,
as some of the datasets used are known to follow an exponential distribution.
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3 The Distributive Thermometer

All thermometer variations yield significant improvements in accuracy compared
to the other binarization schemes, but all of them assume a distribution over
the input space. The linear thermometer, a uniform distribution, the gaussian
thermometer, a normal distribution, etc. This can be highly beneficial where
these assumptions are true, as it gives higher resolution to inputs near the mean
of the distribution.

Nevertheless, such strategies can be detrimental to accuracy when the input
distribution does not match these assumptions, as high density areas in the value
scale may not get as high resolution from the thermometer as needed and less
dense areas may end up getting excess resolution instead. In order to address
this, we propose a simple yet effective solution, the distributive thermometer,
a thermometer encoding that splits the input space purely according to the
training data, without making an assumption about the distribution. It splits
the training data into B+1 percentiles of same probability, then assigns the unary
code based on the percentile the input data belongs to. This has the desirable
property that high density areas will have higher resolution (bit assignments),
and low density areas, a lesser one.

4 Experiment and Results

To verify our thermometer technique indeed approximates the input distribution
from the training data, and that the other thermometers are detrimental to
training when they assume an incorrect distribution over the input, we compare
the accuracy of a WiSARD model using the bleaching tiebreaker while using the
Linear Thermometer, the Gaussian Thermometer, an Exponential Thermometer
and the Distributive Thermometer on a wide range of datasets [11, 12, 13, 14].
We choose to include an Exponential thermometer as some of the datasets are
known to follow an exponential distribution. For each dataset and encoding, we
run the WiSARD model on 1000 different mappings, calculate the mean and
standard deviation of the results, and perform a t-test to verify the significance
in the change in accuracy between thermometers.

Table 1 shows the means and standard deviations of the results. All t-tests
between thermometers with accuracies with different means was found to have
a p-value < 0.0001 (i.e., they indeed represent a statistically significant change
in accuracy). We see that the Distributive Thermometer wins in most datasets,
only being in 2nd by a tiny amount (at most 0.004). We also verify that the
Gaussian thermometer performs best at different datasets than the Exponential,
as both assume different distributions, and that when the assumption is wrong
it is highly detrimental to accuracy, as expected. The Distributive wins by a
big margin when the assumptions of the Gaussian and Exponential are wrong in
relation to one another (up to 0.03), and keeps up with them or even wins when
the assumptions are true. In the EEG Eye State dataset, where most attributes
neither follow a uniform, gaussian or exponential distribution, the Distributive
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Accuracy

Dataset Linear Gaussian Exponential Distributive

Glass 0.71 ± 0.04 0.75 ± 0.04 0.72 ± 0.04 0.75 ± 0.04
Ecoli 0.85 ± 0.02 0.85 ± 0.02 0.83 ± 0.03 0.86 ± 0.02
Vehicle 0.73 ± 0.02 0.74 ± 0.02 0.74 ±0.02 0.75 ± 0.02

Fetal Health 0.909 ± 0.009 0.910 ± 0.009 0.912 ± 0.007 0.914 ± 0.007
SatImage 0.877 ± 0.005 0.887 ± 0.004 0.871 ±0.006 0.887 ± 0.004

EEG Eye State 0.589 ±0.002 0.65 ± 0.01 0.603 ± 0.008 0.852 ± 0.007
Maggic Gamma Telescope 0.823 ± 0.007 0.835 ± 0.006 0.841 ± 0.006 0.837 ± 0.006

Fashion MNIST 0.835 ± 0.002 0.837 ± 0.002 0.852 ± 0.002 0.848 ± 0.002
MNIST 0.958 ± 0.001 0.948 ± 0.002 0.9628 ± 0.0008 0.9617 ± 0.0008

Table 1: Mean accuracy and standard deviation of the Linear Thermometer
(Linear), Gaussian Thermometer (Gaussian), Exponential Thermometer (Expo-
nential) and Distributive Thermometer (Distributive) on the different datasets.

Thermometer wins by 0.263, 0.202, and 0.249 respectively.

In Fig. 1 we are able to visualize how each of the thermometers is approxi-
mating the distribution and where they are giving higher resolution to the input.
The Gaussian and Exponential Thermometers are able to properly approximate
the distribution only when their priors are true, while the Distributive is able to
do so in all of them, splitting the input space in the same manner as Gaussian
in the first column, Exponential in the second column, and the only one to give
higher resolution to the two peaks in the third column.
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Fig. 1: Division of the input space by the thermometers. On first column, how
they divide a normal distribution, and on the second column, an exponential
distribution, and on third column, a distribution with two peaks.
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5 Conclusion and Future Work

In this work, we propose a thermometer variation that doesn’t make assumptions
about the inputs distribution, but instead follows the training data, providing
high resolution where it is needed. The results show it achieves similar or better
accuracy when compared to a thermometer that has prior knowledge about the
distribution, and up to 26.3% more accurate when other thermometers assume
an unsound distribution. As immediate further work, one can take labels of
the training data into account as well, as a region of high resolution may not
be needed if there is only a single label there, and extra bits may be useful in
regions where there is a higher density of different labels close to each other.
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