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Universidad Autónoma de Madrid - Escuela Politéctica Superior
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Abstract.

A novel sequential procedure to train the final layers of a multi-output
regression neural network (NN) based on Gradient Boosting is proposed,
where the NN is an additive expansion of the Gradient Boosting. The
method works by training portions of the network in an iterative manner
in such a way that each new portion of the NN is learnt to compensate
for the errors of the already trained portions, and the final result of the
network forms by provided weight and the last hidden layer output. This
is in contrast to the standard training of NNs in which the whole network
is trained to learn the concept at hand. Extensive experiments show the
good performance of the proposed method with respect to NN.

1 Introduction

The focus of the Multi-output regression is to predict multiple continuous targets
concomitantly from a common set of input attributes. A straight forward way
to tackle this problem is to break it into multiple single output problems and to
learn one model for each problem. However, it can be beneficial to share part
of the model in between the different targets [1,2]. For instance, by sharing the
main structure of the multiple-output neural networks (NNs).

On the other hand, the Gradient Boosting (GB) framework [3] has demon-
strated to be among the best machine learning methods for solving tabular data
problems [4]. The main procedure for gradient boosting based method is to built
sequentially an ensemble as an additive sequence of learners, such that each new
model learns the residual information not learned by previous learners. [3]. These
approaches work by combining, generally, decision trees as their base classifiers.
Although, the gradient boosting procedure has also been combined with neural
networks [5,6]. In [5], a residual network that uses the functional gradient mini-
mization is proposed. Likewise, in [6] ResNet with the use of Gradient Boosting
is reconstructed by augmenting the residual block with a linear binary classifier
and continued to train the weights. Nevertheless, these studies are designed for
single output classification tasks only.

In this study, we propose the creation of a multi-output neural network that
is trained in phases using gradient boosting. An extensive performance analysis
is carried out that shows that the proposed method works generally better than
standard neural networks.

∗The authors acknowledge financial support from PID2019-106827GB-
I00/AEI/10.13039/501100011033. And also acknowledge the Centro de Computación
Cient́ıfica — UAM, for the computational resource and time.
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2 Proposed method

In this section, we describe the proposed approach for training a single multi-
output regression neural network using gradient boosting. This method is an
adaptation for multi target regression of the single output Gradient Boosting
Neural Network (GBNN) [7]. GBNN trains the parameters of the neural network
in phases and sequentially using gradient boosting, instead of jointly as in any
standard back-propagation algorithm.

...

...

...
...

Fig. 1: Multioutput Regres-
sion Neural Network Train-
ing via Gradient Boosting

In order to train a multi target regression net-
work, as the one shown in Fig. 1, at each step only
a horizontal portion of it is trained (e.g. the part
highlighted with dark lines in Fig. 1). Each new
portion of the network is trained using a different
set of output targets, as defined by the GB proce-
dure, in such a way that the additive combination
of all trained sub-networks given by the output
layer units would produce the final prediction.

In detail, given a multi-output dataset of N
instances as D = {xi,yi}

N

i=1, where xi ∈ R
D and

yi ∈ R
K , where D is the number of attributes and

K the number of output variables, the objective
of a multi-output regression algorithm is to find
K functions, F̂ = {F̂ {k}}K

k=1, that minimize the
empirical loss

N
∑

i=1

L(yi, F̂(xi)) . (1)

In this work, we will only consider the square loss L
(

y,F(x)
)

= 1
2

(

y−F(x)
)2
.

A different loss function could be used although a second optimization step would
need to be done after each portion of the network is trained like in standard
gradient boosting [3].

In the proposed gradient boosting neural network, the set of functions F

are approximated incrementally as an additive sequence F̂t(xi) = F̂t−1(xi) +
ρht(xi), where ht(x) is a multi-output neural network for the tth boosting iter-
ation and ρ is the learning rate term, useful to regularize [3]. The construction
of each term of the sequence, ht(x), should reduce the loss function

ht(·) = argmin
h

N
∑

i=1

L(yi,Ft−1(xi) + ρht(xi)) . (2)

where the first term of the sequence is initialized with the constant value that
minimizes Eq. 1, which for the square loss is the mean value of the targets
F0 = ȳ. The rest of the terms of the sequence, which correspond to portions of
the network as shown in Fig. 1, are trained using a standard back-propagation
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algorithm using as targets the residuals of the previous phase

rti = −
∂L(yi,F(xi))

∂F(xi)

∣

∣

∣

∣

F(x)=Ft−1(x)

= yi − Ft−1(xi) . (3)

The weights of the network that are trained at each step are disjoint except for
the weights from the bias term z0 to the output layer (see Fig. 1). Hence, in
order to obtain the correct output, at the end of the process the bias weights
have to be reassigned to the sum of all steps (including step 0)

ω0k = ȳk +

T
∑

t=1

ρωt

0k (4)

In addition, the rest of the weights from the hidden layer to the output layer
have to be multiplied by the learning rate ρ. Note that, we are considering only
shallow networks. The adaptation to deeper networks is not straightforward.
In any case, shallow models can be much better than deeper ones for tabular
data [4]. Furthermore, at each step J internal neurons could be trained, and not
just one as shown in Fig. 1. Finally, subsampling the data at each step is, like
the learning rate, a good way to regularize [8].

3 Experiments

The performance of the proposed method, Multi-output Gradient Boosted Neu-
ral Network (GBNN-MO)1 is investigated on 10 multi-output regression datasets
with different numbers of instances, features, and targets. The summary of the
analyzed datasets is shown in Table 1. The proposed method is compared with
respect to a standard multi-output neural network (NN-MO), single-output Gra-
dient Boosted Neural Network (GBNN-SO) and single-output neural network
(NN-SO). The single output methods have to be trained independently once per
target. The experimental comparison setup is done using a common three-fold
cross-validation for all methods. For each of the three partitions train/test of
each dataset the following steps are carried out: (i) the train partition is normal-
ized so that all attributes have zero mean and one variance. The test partition is
also normalized using the parameters obtained from the train set; (ii) the optimal
values for the hyper-parameters for each method are obtained using a three-fold
cross-validation within the training set. The values for the grid search for the
Neural Network (NN-MO and NN-SO) are the number of neurons in the hidden
layer and set to [1,3,5,7,11,12,17,22,27,32,37,42,47,52,60,70,80,90,100,150,200].
For both GBNN-MO and SO, the grid was set to [0.025,0.1,0.5,1] for learning
rate (ρ), [0.5,0.75,1] for the subsample, and [1,2,3,5] for the number of neurons
to be learned at each step (J). The total number of internal neurons is set to
T = 200 for GBNN-MO and SO. All NN and GBNN methods use Adam as the
internal optimizer and trained for 200 epochs; and (iii) the four methods were
tested on the test set and the average values for the three partitions are reported.

1github.com/GAA-UAM/GBNN-MO/
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Dataset Instances Features Targets Dataset Instances Features Targets
atp1d [1] 337 411 6 rf2 [1] 9,125 576 8
atp7d [1] 296 411 6 scm1d [1] 9,803 280 16
oes10 [1] 403 298 16 scm20d [1] 8,966 61 16
oes97 [1] 334 263 16 sf1 [9] 323 10 3
rf1 [1] 9,125 64 8 sf2 [9] 1,066 10 3

Table 1: The datasets used in the experiments and details

1 2 3 4 5

NN−MO

NN−SO

GBNN−SO

GBNN−MO

CD

Fig. 2: Demsar diagram for the tested models (more details in the text)

The average performance for each method and target, measured as Root
Mean Square Error (RMSE), is shown in Table 2. The table shows the targets
in columns and the datasets and methods in rows. The best method result for
each target is highlighted in bold face.

The results shown in Table 2 indicate that GBNN-MO is in general supe-
rior to the standard multi-output NN training method (NN-MO) in the studied
datasets. NN-MO only achieves a better performance than GBNN-MO in: four
targets of oes10, nine targets of oes97, five targets of rf2 and a two targets in
rf1. The proposed multi-output method outperforms NN-MO in 78 out of 98
of the tested targets. Comparing the multi-ouput and single-output versions of
GBNN, the results are more even. Both methods obtain very similar RMSE
values. Although GBNN-SO is better than GBNN-MO in 68 targets and in 30
targets GBNN-MO outperforms GBNN-SO. The same observations can be made
for the differences between NN-MO and NN-SO.

In Figure 2, an overall comparison between the performance of the models
is illustrated graphically using a Demsǎr diagram [10]. The Figure 2 describes
the average ranks, where the lower value denotes better performance. Statistical
differences between the models is determined with a Nemenyi test. Two methods
are statistically different if the difference in average rank is above the critical
difference (CD = 0.47 for four models and 98 regression targets and p-value =
0.05). In the diagram, models whose performance is statistically different are
not linked. As shown in the diagram, both GBNN-MO and SO are better than
NN-MO and SO with statistical significance.

Considering the computational performance of the different methods, we have
carried out an experiment to measure the training time and the average time
to predict an instance for four datasets with a variety in the number of targets.
The number of neurons of the hidden layer for the NN methods and the number
of neurons of the GBNN-MO and SO are set to 200, the learning rate and
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Dataset Method t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16

sf1

NN-MO 0.4146 0.4833 0.1638
NN-SO 0.4129 0.4999 0.1590
GBNN-MO 0.3929 0.4573 0.1524
GBNN-SO 0.3931 0.4500 0.1445

sf2

NN-MO 0.7992 0.3044 0.1004
NN-SO 0.7950 0.3020 0.0969
GBNN-MO 0.7899 0.2871 0.0921
GBNN-SO 0.7892 0.2880 0.0915

atp1d

NN-MO 99.53 155.92 151.83 144.50 106.50 146.04
NN-SO 92.85 157.95 161.04 151.33 100.95 150.40
GBNN-MO 52.37 98.35 80.78 60.84 55.78 65.20
GBNN-SO 46.82 107.10 84.93 60.73 52.48 64.97

atp7d

NN-MO 119.23 166.24 174.41 170.83 125.90 171.06
NN-SO 115.59 171.00 181.85 179.14 126.35 179.58
GBNN-MO 34.46 79.83 67.16 62.19 39.21 64.22
GBNN-SO 33.43 78.21 66.50 56.08 44.06 62.89

rf1

NN-MO 34.06 0.85 35.07 21.68 15.49 4.00 9.64 9.28
NN-SO 22.68 0.93 28.55 18.52 9.22 2.03 4.24 5.59

GBNN-MO 18.46 7.79 20.89 13.64 7.16 8.45 6.94 7.07
GBNN-SO 19.22 0.78 20.28 14.74 7.52 2.22 5.85 6.37

rf2

NN-MO 8.53 0.75 8.14 5.32 6.45 2.42 4.89 7.28
NN-SO 8.66 0.90 8.16 5.31 4.75 1.22 3.71 3.62

GBNN-MO 11.23 5.24 9.61 6.69 3.86 5.00 2.86 4.46
GBNN-SO 6.29 0.75 8.31 5.02 5.94 0.86 2.16 4.64

scm1d

NN-MO 112.1 123.6 116.1 126.0 121.8 134.2 150.5 164.4 153.5 161.0 121.9 133.3 154.3 167.5 164.7 177.1
NN-SO 108.3 121.5 117.3 131.3 156.2 174.0 170.5 183.4 108.0 122.1 119.7 129.9 147.2 165.8 157.1 167.4
GBNN-MO 72.6 78.8 75.6 83.3 78.1 88.7 93.7 107.3 99.3 105.4 80.7 88.7 100.5 112.2 113.3 119.4
GBNN-SO 62.1 73.4 72.7 78.9 88.3 101.8 102.1 108.3 67.5 76.6 70.7 81.6 90.6 98.7 93.4 98.5

scm20d

NN-MO 156.7 173.4 164.4 185.2 177.3 195.4 218.5 235.0 229.8 243.7 174.9 194.4 223.7 241.8 244.5 261.5
NN-SO 135.5 151.0 156.4 173.7 203.8 221.2 227.2 245.5 141.1 162.7 155.4 175.1 197.5 215.5 212.5 229.1
GBNN-MO 105.8 113.9 113.2 127.2 118.1 129.7 147.9 161.1 157.2 165.9 115.1 129.7 152.5 162.3 166.5 179.1
GBNN-SO 87.1 97.4 99.6 111.8 133.9 142.8 148.9 158.2 96.2 110.2 101.0 112.8 128.6 141.1 138.7 146.7

oes10

NN-MO 208.8 290.7 509.2 366.4 837.5 380.8 840.7 2323.7 237.9 934.6 288.4 780.3 272.8 977.5 296.6 223.8
NN-SO 198.5 266.7 276.8 762.0 243.2 885.4 274.6 222.0 441.6 331.0 730.8 318.9 781.4 1980.9 220.0 866.9
GBNN-MO 243.1 234.4 495.6 230.8 703.9 239.5 746.6 3078.7 252.2 788.5 251.1 698.8 282.3 852.2 296.0 217.2

GBNN-SO 155.4 208.8 188.9 617.1 171.3 795.7 223.9 164.4 417.3 202.6 398.4 159.4 589.9 1326.2 163.2 619.0

oes97

NN-MO 2153.9 478.1 1875.5 665.7 624.0 2240.8 1153.2 1338.3 180.4 1033.5 164.0 568.1 438.0 333.1 225.0 261.5

NN-SO 2033.9 444.2 156.9 520.1 426.4 321.9 231.4 236.5 1852.0 616.9 567.5 2172.5 1125.2 1309.4 167.5 1010.9
GBNN-MO 2450.1 449.0 2348.7 558.4 618.3 2372.0 943.8 1244.4 489.0 919.5 412.5 455.7 438.2 372.7 433.5 440.1
GBNN-SO 1087.6 215.5 152.0 266.6 325.6 243.7 237.4 165.1 1035.0 408.3 481.1 1737.8 799.1 1084.9 143.3 896.4

Table 2: RMSE for Single-Output (SO) and Multi-Output (MO) approaches of
GBNN and NN

subsample values for GBNN are fixed to 1.0 and 0.5, respectively. The results
of the training and average prediction times are shown in Table 3.

As it can be observed from Table 3, the average classification time necessary
to classify 106 instances is very similar in between the MO models and in between
the SO models. This makes perfect sense as both algorithms build the same
architecture: one single network for the MO models and one network per target
for the SO. The only element that changes is the value of the computed weights,
which do not have an impact in the evaluation time. More interestingly, when
comparing MO with respect to the SO models, it can be observed that the
MO models present faster prediction times. This is due to the fact that in the
MO models the input-to-hidden layer is shared in contrast to the SO models
that have one input (and output) layer per target. In principle, there is not an
important time gain in the hidden-to-output layer as the single output layer of
MO is #targets more complex than the individual layers of the #targets SO
models. Regarding the training times, it can be observed that the training of
a single MO network is also more efficient than training one SO network per
output for both NN and GBNN algorithms. On the other hand, the differences
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Method GBNN-MO GBNN-SO NN-MO NN-SO
Time fit pred fit pred fit pred fit pred
rf1 24.05 10.78 100.47 66.40 30.94 10.33 163.44 61.10
rf2 172.22 30.88 947.78 244.32 96.91 27.83 640.84 209.79
scm1d 72.25 23.89 375.22 363.79 74.66 22.71 1066.25 385.14
scm20d 16.19 13.47 158.39 193.57 28.84 9.25 373.34 113.39

Table 3: Training time and prediction time for 106 instances in seconds

in the training times between NN and GBNN are problem dependent and can
be explained by the different number of iterations needed to reach convergence.

4 Conclusion

In this paper, a novel sequential approach to train a single multi-output neural
network regressor with gradient boosting is presented. The network is trained
in phases. At each stage a portion of the full-network is trained to fit the resid-
uals of the targets not learned by the previous trained portions. The proposed
training approach is compared with the standard training procedure on ten mul-
tiple target regression tasks with favorable results in general for the proposed
methodology. Furthermore, we showed experimentally that the computational
complexity of the proposed method is equivalent to a NN trained using the
standard procedure.
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