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Abstract. Deep neural networks perform well in many visual recogni-

tion tasks, but they are sensitive to adversarial input perturbation. More

robust models can be learned when attacks are applied to the training

data or preprocessing is used. However, the effect of preprocessing is fre-

quently underestimated and it has not received sufficient attention as it

usually does not affect the network’s clean accuracy. Here, we seek to

demonstrate that preprocessing can play a role in improving adversarial

robustness. Our empirical results show that principal component analy-

sis, a simple yet effective preprocessing method, can significantly improve

neural networks’ robustness for both regular and adversarial training.

1 Introduction

Improving neural network robustness to input perturbations is still a challenging
task. Although in recent years, researchers have made great progress for both
empirical [1, 2] and certified robustness [3, 4], the gap between clean accuracy
and robust accuracy is still quite large.

Here, we will simplify the robustness problem by eliminating certain input
modifications. We expect that this elimination will simplify the robustness prob-
lem and help us to get a more robust representation. To reduce perturbations,
we used principal component analysis(PCA), which maximizes the variance of
the projected data and eliminates irrelevant input features.

Our empirical results confirm this when, we trained models jointly with PCA
preprocessing and observed improved robustness for both normal and adversarial
training. We used white box gradient attacks which assumed that the attacker
is aware of the used preprocessing.

There is a line of work, where PCA is used to improve adversarial robustness.
In [5], the authors improve certified robustness to l2 norm bounded perturba-
tions using a low-rank representation and randomized smoothing. The essence
of their method is the randomized smoothing applied in a low-rank space that is
estimated by sparsified PCA. They also generalized this certification to l∞ norm
bound perturbations.

In [6], the authors improved robustness to l∞ norm bounded perturba-
tions by introducing a prepossessing method. The method consists of two steps,
namely randomly dropping some pixels from the input image and reconstruct-
ing the image with the matrix estimation method. The proposed method uses
randomness to destroy the adversarial perturbation in the masking step. In the
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reconstructing phase, their method requires estimating the matrix for each input
image since it is assumed that the matrix to be reconstructed is a single image.

Our contributions can be summarized as follows. We designed experiments
which demonstrate that PCA alone can improve robustness without randomiza-
tion. In the related works, PCA was applied with an arbitary number of principal
components. In contrast, our findings suggest that proper selection is essential.
Also, PCA improves robustness to l1, l2, l∞ norm bounded perturbation. So far
l1 robustness improvement was hidden.

2 Combining principal component analysis and neural net-
works

Let us introduce our notations. We assume there is a set of examples in the form
of (x, y) pairs and x ∈ R

d where d is the number of input features or intensity
values in an image. y ∈ C is the class label and C is the set of all labels. We define
X ∈ R

n×d, which denotes n images in matrix form. Further, we will use linear
projections on an x sample with a projection matrix P ∈ R

d×m. It projects
the input image onto an m dimensional space. Our aim here is to combine the
projection matrix with neural networks that will perform the classification to
improve their robustness. We will denote the neural network by f , which is a
function that maps its input to the label set C with weight values θ.

Let us define our baseline model fbaseline. It has learnable parameters Pbl its
projection matrix and θbl are the neural network weights. Note that both the
projection matrix and the neural networks are trained jointly according to the
training procedure. The output of the network is given by fbaseline(xPbl, θbl).

As a stronger baseline, we consider a neural network with random projection
frandom. It onnly has θr as learnable weights. The projection matrix Pr is
sampled from a normal distribution with zero mean and 1

m
variance and it is

frozen during training. The output of the network is given by frandom(xPr, θr).
We have two baseline models, and we will define models that employ PCA.

We applied PCA in the following way. First, we got the correlation matrix XTX,
which is a d×d matrix. The d is usually much less than n the number of samples
in the dataset, so we have a more efficient method than simply applying PCA on
the original matrix. Next, we calculate the singular value decomposition(SVD)
of XTX, which will give us three matrices U, S and W . U and W are orthogonal
matrices and S is a diagonal matrix. It can readily be seen that the W obtained
this way is equivalent to the one which is given by the SVD applied on the X
matrix and S is the square of the X’s singular values.

fpca is defined with Ppca = Wm as a projection matrix. Here, the subscript
means that we took only the first m rows of W . Note that the rows are sorted
according to values in S and the earlier a row is, the more variance is attributed
by it. There are also learnable weights θp but Pp is frozen again so it will not
change during training. The output of the network is given by fpca(xPp, θp).

We have another variant with reconstruction to combine PCA and neural net-
work training called fpca−r. The projection matrix same Ppr = Wm but before
passing the projected data to network we reconstruct it, therefore the output of
the network is f(xPprP

T
pr, θpr). Note that since W is orthogonal, simply trans-
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Explained variance ratios
Dataset 0.75 0.8 0.85 0.9 0.95 0.99 0.999

MNIST 16 23 34 53 103 281 458
F-MNIST 2 4 6 16 65 319 619

Table 1: The number of components/neurons in the linear layer. They were
selected according to the explained variance ratios got by PCA. These are the
percentages of variance that are attributed to the selected components.

posing it will give the inverse matrix that can transform the projected data back
to the input space. However, the reconstruction lose certain information because
we don’t use the full matrix. We expect that this information loss don’t harm
the accuracy but rather improve its robustness to irrelevant modifications.

3 Model training and evaluating robustness

3.1 Training objectives

We tried out two training strategies, namely normal training(NT) and adver-
sarial training(AT). NT means that the models are trained on the clean images
using the categorical cross-entropy loss function. In the case of AT, l∞ pro-
jected gradient descent(PGD) was applied on each train batch for 10 steps with
a step size 0.025 and ǫ = 0.1. The training objective was again the categorical
cross-entropy loss.

3.2 Databases and hyper parameters

We conducted our experiments on two benchmark image datasets called MNIST [7]
and Fashion-MNIST [8]. We normalized the 28×28 gray scale images so that the
intensity values have a range of [0, 1]. For model selection purposes, we excluded
1000 samples from the train set and used them as a validation set.

We trained all the models with the Adam [9] optimizer using of 10−4 learning
rate and batch size of 50 for 100 epochs. The best checkpoint was selected based
on validation accuracy or robust accuracy according to the training objective.

We trained fully connected neural networks with the following number of hid-
den layers: 0, 1, 2 and 4. Here 0 means that there is no hidden layer so it is equiv-
alent to a multi-class logistic regression classifier. In each hidden layer, we used
Relu activation and added 256 neurons. The number of components/neurons in
the first linear layer for all the models was evaluated for the range of values given
in Table 1. The values were selected according to the explained variance ratio
from 0.75 up to 0.999. These are the percentages of variance that are attributed
to the selected components.

3.3 Robustness measures

For robustness measures, we applied PGD variants with l1, l2, l∞ norm bounds
using the FoolBox [10] library. As we implemented PCA as part of the neural
network architecture, both the preprocessing and the neural networks were used

237

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1. 
Available from http://www.i6doc.com/en/.  



MNIST and F-MNIST normal training(NT) results
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Fig. 1: Accuracy and robust accuracy are shown as a function of m, the dimen-
sion of the projected space. MNIST model results are at the top and F-MNIST
are at the bottom. All the models were trained using clean images. Models com-
bined with PCA have a similar accuracy while displaying improved robustness
in all the norms.

for gradient propagation. This is a white-box scenario when the attacker is fully
aware of the model pipeline. For each norm, we used 100 steps and 10 restarts
with random initialization and the step size was set to ǫ/100 ∗ 2.5. The ǫ values
were 10, 1, 0.1 for norms l1, l2 and l∞, respectively.
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MNIST and F-MNIST adversarial training(AT) results
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Fig. 2: Accuracy and robust accuracy are shown as a function of m, the dimen-
sion of the projected space. MNIST model results are at the top and F-MNIST
on at the bottom. All the models were trained using l∞ PGD. Models combined
with PCA show improved robustness for l1 and l2 norm attacks, while accuracy
and l∞ robust accuracy are comparable to the baseline model.

3.4 Results

Figure 1 and 2 show accuracy and robust accuracy for NT and AT results,
respectively. In the case of a small projection size, baseline models provide
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better accuracy on clean images than the other methods. However, this difference
diminishes when we add hidden layers and the accuracy values are at the same
level for baseline and PCA variants. As for robust accuracy, the methods differ
greatly. PCA-based methods have better robustness in all norms than those
with the baseline and random projection. Interestingly, robustness curves fot
the PCA variants have a sweet spot. This is best seen on the Fashion-MNIST
dataset. Figure 2 shows that robust accuracy improved in l2 and l1 norms. Note
that l∞ PGD was applied on the training images, while l2 and l1 were not.

4 Conclusion

A combination of PCA and neural networks was presented with and without re-
construction. The reconstructed version is more flexible and suitable for CNNs.
We demonstrated that the combination methods indeed improve robustness
against l1, l2 and l∞ norms for both regular and adversarial training without
any randomness. The results also show that there is a sweet spot for projected
space size and ad-hoc selection might give unsatisfying robustness.
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