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Abstract. Rank-one projections (ROP) of matrices and quadratic ran-
dom sketching of signals support several data processing and machine
learning methods, as well as recent imaging applications, such as phase
retrieval or optical processing units. In this paper, we demonstrate how sig-
nal estimation can be operated directly through such quadratic sketches—
equivalent to the ROPs of the “lifted signal” obtained as its outer product
with itself—without explicitly reconstructing that signal. Our analysis re-
lies on showing that, up to a minor debiasing trick, the ROP measurement
operator satisfies a generalised sign product embedding (SPE) property.
In a nutshell, the SPE shows that the scalar product of a signal sketch with
the sign of the sketch of a given pattern approximates the square of the
projection of that signal on this pattern. This thus amounts to an insertion
(an inception) of a ROP model inside a ROP sketch. The effectiveness of
our approach is evaluated in several synthetic experiments.

1 Introduction

More and more algorithms in signal processing, optimisation, matrix algebra and
machine learning rely on random projections. They are used to relax the com-
putational burden of ever-growing data flows with data-agnostic dimensionality
reduction procedures, such as linear random projections for data embedding or
compressive sensing [2], while preserving specific information. Random projec-
tions are also used (in combination with nonlinear maps) to unfold (or embed)
a dataset in larger dimensional feature spaces [10]. For example, this expanded
domain can be more amenable to data separability or to clustering than the
initial space, or endowed with specific kernels induced by the projection [14].

The estimation of specific properties (or functions) of signals is crucial to
many data processing techniques, hence the ability to perform it in the feature
(“projected”) domain is of strong interest. For instance, one may be interested
in processing video streams (e.g., for traffic monitoring, industrial quality control
or video surveillance) to deduce localised data characteristics, i.e., restricted to
a given area of the original field-of-view (e.g., for traffic density estimation or
object detection [1]). Data processing tools based on random projection should
thus comply with this goal, which can be challenging if the area-of-interest is
unknown a priori, or subject to change.

In this work, we tackle the question of performing signal estimation—here
restricted to the estimation of some linear function of a signal—from a projec-
ted data stream provided by quadratic random projections of signals (see Sec. 2).
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This specific data-agnostic projection is related to the sketching1 technique of
rank-one projections (ROP) [8, 6]. Our work is motivated by a recent optical ma-
chine which performs ultra-rapid and low-power computations of such quadratic
sketches [10]. However, with this technology, these computations are performed
in a black-box manner, which prohibits us to explicitly access the random con-
struction supporting the ROP model inside the localisation procedure—they are
thus hidden to us (i.e., we do not have access to the adjoint ROP operator). Our
main contribution amounts to showing theoretically that, up to some controlled
distortion, signal estimation can be operated directly on quadratic signal sketches
without reconstructing the signal (and hence avoiding often costly reconstruction
methods [7, 6, 5, 8]). More specifically, the square of this comparison—which
is a ROP itself—can be approximated by projecting the sketched signal on the
sign of the sketched pattern, i.e., summarising this last sketch to only the sign
its components (see Sec. 3). We thus achieves a sort of inception of a ROP
inside a ROP model. This result is thus similar to the techniques pursued in [3],
where specific signal processing tasks are shown to be computable directly from
compressive measurements. Our theoretical analysis is achieved from a gener-
alisation of the sign product embedding (SPE) property, initially developed in
one-bit compressive sensing [9, 5].

To demonstrate the efficacy of our approach, we consider several synthetic
signal estimation scenarios in Sec. 4. A first experiment quantifies the approxim-
ation error induced by our approach by considering a pattern that is orthogonal
to the signal of interest. Next, we show how we can localise a rotating disk in
one of the four quadrants of an image using only the image ROPs. Finally, we
propose to classify MNIST handwritten digit images [4] directly in the DROP
domain, with accuracy comparable to a direct processing of these images.

2 Sketching with hidden rank one projections

In this work, we consider the quadratic data sketching mechanism, which consists
in taking a series of m quadratic measurements (a⊤

i x)
2 of a signal of interest

x ∈ Rn, with a set of m random vectors {ai}mi=1 ⊂ Rn. The sketching operator
Av applied to the vector x is thus defined as

Av : x ∈ Rn 7→ Av(x) :=
(
(a⊤

i x)
2
)m
i=1

:=
(
(a⊤

1 x)
2, . . . , (a⊤

mx)2
)
∈ Rm

+ . (1)

We assume that, while the operator Av can be computed, we cannot explicitly
access to the random vectors {ai}mi=1. This restriction is indeed required by
a recent optical technology, named Optical Processing Unit (OPU) [10]. An
OPU allows us to compute all the components of Av(x) in a reproducible way
using the physical properties of multiple scattering of coherent light in random
media, which is thus extremely fast and power-efficient (even if m ≃ n). In this
context, the vectors {ai}mi=1 are fixed, but hidden to us. Moreover, following the

1In this work, the term “sketch” designates a generic data transformation (feature map)
without restriction to the special case of dimensionality reduction; the dimension of a signal
sketch can thus be larger that the input signal space dimension.
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observations made in [10], we assume that each random vector ai is i.i.d. as a
Gaussian random vector2 a ∼ N (0, In), with identity covariance In.

As observed in the context of phase retrieval [7], the operator Av amounts to
a rank-one projection of the lifted signal, i.e., the rank-one matrix X = xx⊤ ∈
Rn×n, onto the rank-one random matrices {Ai := aia

⊤
i }mi=1 ⊂ Rn×n, as defined

by the equivalence Av(x) =
(
(a⊤

i x)
2
)m
i=1

=
(
a⊤
i xx

⊤ai

)m
i=1

=
(
⟨Ai,X⟩

)m
i=1

=:
A(X), where ⟨·, ·⟩ is the Frobenius inner product [8, 6]. We thus use “quadratic
sketch” and “ROP measurements” interchangeably.

As the ROP operator is biased—i.e., given a signal x, there is no constant
c > 0 such that the mean of the norm of Av(x) can be proportional to ∥X∥2F—it
is useful to introduce the debiased ROP operator (DROP) [8]:

B : x ∈ Rn 7→ B(x) =
(
Av

2i(x)−Av
2i+1(x)

)m
i=1

. (2)

An OPU can trivially implement this operation by applying finite pixel differ-
ences in its focal plane. It can be shown that 1

4mE∥B(x)∥2 = ∥x∥4 [8, Lemma 4],
meaning that B is thus unbiased. While the approximation 1

4m∥B(x)∥2 ≈ ∥x∥4
is hard to achieve at reasonable values of m—B respects the restricted isometry
property (RIP) in only a few restrictive settings [8, 6]—we leverage below an-
other useful property of B.

3 Signal estimation in the DROP domain

Our objective is to show that we can do (approximate) signal estimation—when
this estimation amounts to estimating a linear function of the signal—directly
from random quadratic signal sketches, and thus without knowing the observed
signal. This is possible by demonstrating that the DROP operator respects, with
high probability, the (local) sign product embedding (SPE) property [9], whose
proof is postponed to this supplementary material [15].

Proposition 1. Given a fixed unit vector u ∈ Rn, κ = π/4, and a distortion
0 < δ < 1, provided that

m ≥ Cδ−2k log( n
kδ ), (3)

then, with probability exceeding 1 − C exp(−cδ2m), for all k-sparse signals x ∈
Σk := {v ∈ Rn : |supp(v)| ≤ k}, B respects the SPE over Σk, i.e.,∣∣∣ κ

m ⟨sign(B(u)),B(x)⟩ − ⟨u,x⟩2
∣∣∣ ≤ δ∥x∥2, (4)

with sign the sign operator applied componentwise on vectors.

This proposition states that, provided thatm is large compared to the dimen-
sion of a signal space S (here S = Σk and we thus need m = Ω(δ−2k) up to log
factors), for any vector x ∈ S, projecting its sketch B(x) on sign(B(u)) ∈ {±1}m
is a proxy for ⟨u,x⟩2—a ROP of xx⊤ by uu⊤. The spirit of this result is thus

2This optical projection is actually modelled by quadratic projections over complex random
vectors, but we here work in the real field for the sake of simplicity.
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Figure 1: (Left) Estimation of δ in (4). (Middle) Synthetic dynamic image sequence; a rotating
white disk on a black background. (Right) The estimation of the quadrant occupancy functions per
quadrant.

similar to the approach of [3] in linear compressive sensing [3], where a set of
signal processing techniques (including signal estimation) are proved to be ap-
plicable in the compressed signal measurements. Let us emphasise that the
error of the approximation (4) is bounded by δ∥x∥2, that is O(

√
k/m ∥x∥2) (up

to log factors) by saturating (3). Therefore, the equation (4) is useful only if
⟨u,x/∥x∥⟩2 is sufficiently large compared to δ. Incidentally, this allows us to
estimate δ as a function of m by taking a vector u orthogonal to x (see Sec. 4).
Notice that, by a simple union bound argument, Eq. 4 in Prop. 1 can be shown
to hold with the same probability bound for all u in a finite set of S unit vectors
provided m ≥ Cδ−2(k log( n

kδ ) + logS) [15].

4 Experiments

This section contains three experiments demonstrating how one can directly
carry out signal estimation in the range of the DROP operator. Our first experi-
ment aims at measuring the approximation error (δ) in (4). For this purpose, we
took two unit vectors x,u ∈ Rn picked uniformly at random on the sphere Sn−1

with the additional constraint that u must be orthogonal to x. In this case, the
term ⟨u,x⟩2 vanishes in (4) and one can estimate δ by Monte Carlo simulations
over several trials of κ

m ⟨sign(B(u)),B(x)⟩. We show in Fig. 1(left) the estimated
δ over 100 trials (average and maximum value) for n = 1000 and varying ratio
m/n ∈ [0.1, 10]. This estimation confirms that δ decays as O(m−1/2) when m
increases. Moreover, on average, δ ≃ 0.1 as soon as m/n > 0.2.

As a second experiment, we test the possibility to perform localised de-
tection in a simple synthetic video; a sequence of 24 images {xt}23t=0 of size
128 × 128 (n = 16 384) representing a white disk rotating on a black (zero)
background (see Fig. 1(middle)). Our objective is to detect the passage of the
disk in each of the four image quadrants by only processing the DROP measure-
ments {B(xt)}23t=0 ⊂ Rm. We have thus created 4 normalised patterns {uj}4j=1,
with uj being constant in the j-th quadrant and 0 outside, for each 1 ≤ j ≤ 4.
We show in Fig. 1(right) the time evolution of qestj (t) := κ

m ⟨sign(B(uj)),B(xt)⟩
(continuous curves) for m/n = 0.5 in comparison with the quadrant occupancy
functions qj(t) := ⟨uj ,xt⟩2 (dashed lines). The colour coding is given in the
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legend. We observe that each curves qestj (t) provides a fair estimation of qj(t).
Moreover, the amplitude of each curve qestj (t) reduces when the disk is not in the
associated quadrant. A rough detection of the quadrant occupancy could thus
be established by appropriately thresholding each time signal qestj (t).

As final illustration, we perform a toy example (naive) classification of im-
ages taken in the labelled MNIST dataset X := {(xk, tk)}N=70 000

k=1 ⊂ R28×28 ×
{0, . . . , 9} [4] (with normalisation ∥xk∥ = 1). We want to compare the classific-
ation performed in the direct, pixel domain, to the one operated in the sketched
domain. We start by randomly splitting X into a training Xtr and a test set Xte

according to a split of 60 000 and 10 000 images, respectively. From Xtr we com-
pute the 10 centroids {cj}9j=0 ⊂ R28×28 of each class of digits and we define 10
vectors uj = cj/∥cj∥. In the direct domain, the estimated label of an image xk

is then defined as t̂k := argmaxj⟨uj ,xk⟩2. In the sketched domain, the label es-
timate of a test image xk is computed as t̂skk := argmaxj

κ
m ⟨sign(B(uj)),B(xk)⟩,

which should be close to t̂k according to Prop. 1. We reach the following average
testing accuracy (100 trials, ± standard deviation in %) for both the direct and
the sketched classifications:

Direct m = 200 m = 400 m = 800 m = 1600
Accuracy [%] 81.2 69.3± 1.9 75.2± 1.25 78.6± 0.91 80.4± 0.79

These results confirm that, up to some distortion, one can apply this naive
classification procedure directly in the DROP measurements of the dataset. As
predicted by our analysis, this approximation improves when m increases.

To prospectively question the possibility to reach better classification accur-
acy in the DROP domain, we consider the dataset XB = {(B(xk), tk)}N=70 000

k=1 ,
and compute the centroids {cBj }9j=0 ⊂ Rm in the training split of XB. We
then compare two possible classification methods. The first proceeds as a direct
classification in the DROP domain, i.e., we compute the label estimate t̂Bk :=
argmaxj⟨cBj ,B(xk)⟩. The second approach assumes that, for each centroid, there

exists a vector vj such that cBj ≈ B(vj). Under this assumption, we rather es-

timate our label by applying a sign operation to each cBj —which is more aligned

to Prop. 1— and we compute t̂B,sign
k := argmaxj⟨sign(cBj ),B(xk)⟩. We reach

the following average testing accuracy for the two approaches (for m = 800, 500
trials, ± standard deviation in %):

Direct Estimate t̂skk Estimate t̂Bk Estimate t̂B,sign
k

Accuracy [%] 81.2 78.5± 0.7 63.4± 3.3 84.2± 0.6

Keeping only the sign of the estimated centroids provides better testing accuracy
than the unsigned method. In fact, the signed approach outperforms the testing
accuracy of the direct approach by about 3%.

5 Conclusion and perspectives

Our developments have shown that signal estimation is possible by directly pro-
cessing the quadratic measurements of a signal. We achieved this by showing
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that such ROP measurements satisfy the sign product embedding with high
probability provided m is sufficiently large compared to the signal space dimen-
sion. Our theoretical results were backed up by several synthetic signal estima-
tion and classification experiments. In future works, we plan to reproduce this
experiment on an actual OPU to further reduce the computational cost of the
procedure, by also leveraging of the one-bit nature of the signed sketches.
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