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Abstract. We propose a novel algorithm for performing federated learn-
ing with Echo State Networks (ESNs) in a client-server scenario. In par-
ticular, our proposal focuses on the adaptation of reservoirs by combining
Intrinsic Plasticity with Federated Averaging. The former is a gradient-
based method for adapting the reservoir’s non-linearity in a local and un-
supervised manner, while the latter provides the framework for learning in
the federated scenario. We evaluate our approach on real-world datasets
from human monitoring, in comparison with the previous approach for
federated ESNs existing in literature. Results show that adapting the
reservoir with our algorithm provides a significant improvement on the
performance of the global model.

1 Introduction

On-the-edge applications are requiring an increasingly frequent use of machine
learning (ML) systems, a key component for the success of human-centric cyber-
physical systems [1, 2]. This type of application involves large numbers of par-
ticipating users, each of whom is a source of inherently sequential data. This
setting involves two main challenges: (1) the devices involved in this domain
are often low-powered, and achieving a good trade-off between performance and
efficiency in tasks on temporal data may be difficult; (2) the data may be sub-
ject to privacy constraints, which do not allow the use of common distributed
learning techniques. The former is approached through the use of Echo State
Networks [3], a recurrent neural network characterized by excellent accuracy-
efficiency trade-off. The latter has been tackled with Federated Learning [4], a
distributed learning method in which a global model is learned without transfer-
ring local participant’s data. Notwithstanding, to the best of our knowledge, the
intersection area of these two approaches is limited to IncFed [5], a method for
performing an exact computation of the readout of ESNs in a federated scenario.

In this paper, we aim to further bridge the gap between these two areas by
proposing Federated Intrinsic Plasticity (FedIP), a novel algorithm for perform-
ing the unsupervised adaptation of a federation of reservoirs. Our proposal is
based on Intrinsic Plasticity [6], an existing algorithm for adapting the dynamics
of a reservoir with respect to the input sequence, and Federated Averaging, a
client-server algorithm for learning a global model by averaging models learned
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from local client data. We assess the algorithm on two Human Activity Recog-
nition benchmarks, and show that, with a low computation and communication
overhead from the use of FedIP, the performance of the learned global model
can improve significantly.

2 Federated Adaptation of Reservoirs

Echo State Networks. Reservoir Computing (RC) [7] is a paradigm which lever-
ages on the evolution of the neural activations of Recurrent Neural Networks
(RNNs) as a discrete-time dynamical system. A remarkable example of this
paradigm is represented by Echo State Networks (ESNs) [3], which allow to
perform learning task on sequential data efficiently. ESNs are made up of two
main components: a reservoir, a recurrent layer of sparsely connected neurons,
holding the internal state which evolves over time; a readout, a linear transfor-
mation on the domain of the reservoir states. Formally, given an input sequence
of vectors u(t) ∈ R

NU with t ∈ [T ], the equations modelling the state transition
of the reservoir with leaky-integrator neurons and the transformation applied by
the readout can be described as

x(t) = (1− a)x(t− 1) + a tanh
(

Winu(t) + brec + Ŵx(t− 1)
)

y(t) = Wx(t) + bout

(1)

where Win ∈ R
NR×NU is the input-to-reservoir weight matrix, Ŵ ∈ R

NR×NR

is the recurrent reservoir-to-reservoir weight matrix, brec ∈ R
NR is the reservoir

bias term, W ∈ R
NY ×NR is the readout weight matrix, bout is the output bias

term, a ∈ (0, 1] is the leaking rate and x(0) = 0. Instead of backpropagating
the error signal through time as in standard RNNs, ESNs keep the input-to-
reservoir matrix Win and the reservoir-to-reservoir matrix Ŵ fixed, with the
only constraint of choosing spectral radius ρ(Ŵ) < 1 to ensure the stability of
the dynamical system. Thus, only the readout weights W are learned. This
allows to solve the optimization problem as a linear system with the closed-form
solution W = YST (SST + λI)−1 (in short, CF), where Y denotes the matrix
of time-ordered target labels, S is the matrix of time-ordered reservoir states,
λ is an L2-regularization term, and I is the identity matrix. In [5], a federated
version of the CF form was proposed (IncFed), where, given the local matrices
of clients Ac = YcS

T

c and Bc = ScS
T

c , the server is able to compute the exact
solution of the linear system while complying to the privacy constraints of the
federated setting.

Adapting Reservoirs. Intrinsic Plasticity (IP) [6] is an algorithm inspired by
a biological phenomenon, called homeostatic plasticity, for adapting the reser-
voir in an unsupervised manner. Focusing the attention on a single neural
unit, the algorithms requires the neuron’s function to be reformulated as x̃ =
tanh (gxnet + b), where g and b are the gain and the bias of the non-linearity,
respectively, and xnet is the net input to the neuron. When using the tanh
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Algorithm 1: Federated Intrinsic Plasticity (FedIP)

Input: clients C, learning rate η, local epochs E, batch size B
1 R ← {Win,Ŵ,W};
2 g0,b0 ← 1, 0;
3 Send R, η, T to all clients c ∈ [C];
4 for each round t ∈ {1, 2, . . . } do
5 for each client c ∈ [C] in parallel do

6 Send gt,bt to client c;
7 gc

t+1, b
c
t+1 ← LocalIPUpdatec(gt, bt, η, E) ; // Eq. (3),(2)

8 end

9 gt+1, bt+1 ←
∑

c∈[C]
nc

n
gc
t+1,

∑

c∈[C]
nc

n
bc
t+1;

10 end

as non-linearity, the objective of IP is to minimize the Kullback-Leibler diver-
gence between the empirical distribution of the neuron’s activations and a de-
sired Gaussian distributions with parameters µ and σ. This is performed with
a gradient-based approach in which the update rules are formalized as

∆b = −η((−µ/σ2) + (x̃/σ2 + 1− x̃2 + µx̃)) (2)

∆g = η/g +∆bxnet (3)

where µ and σ denote the mean and standard deviation of the target Gaussian
distribution and η is a learning rate. This simple learning rules allow to maxi-
mize the information content of reservoir states, and to reduce the variance in
performance caused by bad initializations.

Federated Intrinsic Plasticity. In this paper, we extend the use of IP to a fed-
erated scenario. Our proposal is intended for a client-server topology, and is
based on the Federated Averaging (FedAvg) [4] algorithm. Given a server S, a
set of clients [C] and a number of local epochs E, a generic round t of FedAvg
can be summarized by the following steps: (1) the server S sends the global
model parameters θt to all the clients; (2) starting from θt, all the clients c ∈ [C]
perform E epochs of adaptation on their local dataset; (3) all the clients c ∈ [C]
send their updated model θct+1 to the server S; (4) the server S applies the ag-
gregation rule to the local models, producing θt+1 =

∑

c∈[C](nc/n) θ
c
t+1, where

nc is the cardinality of the local dataset of client c, and n =
∑

c∈[C] nc. The

weighting term nc/n in the aggregation rule allows to balance the update in the
phase of statistical heterogeneity across clients.

Our algorithm, namely Federated Intrinsic Plasticity (FedIP), instanti-
ates FedAvg only on the gain and bias parameters, i.e. g and b (the pseudocode
is summarized in Algorithm 1). In particular, the server sends all the param-
eters of the reservoir (including g and b) and the hyperparameters only in the
initialization phase. Instead, in a generic round t, the only parameters updated
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and exchanged between clients and server are g and b. In the step (3) a client
c performs E iterations of IP on the local data and sends gc

t+1 and bc
t+1 to the

server, while in (4) the server aggregates gt+1 and bt+1 as in FedAvg. perform-
ing the local adaptation of reservoirs via Intrinsic Plasticity, i.e. updating the
parameters g. One major advantage of this algorithm is that, in each of commu-
nication round, the amount of parameters exchanged between client and server
is rather small, which makes the algorithm suitable for on-the-edge scenarios.

3 Experimental Assessment

In our experiments, we evaluated the performance of the Echo State Networks
in a federated setting with IncFed [5], and FedIP + IncFed, and compared
it with a centralized counterpart where the ESN is trained with the closed-
form only (CF only), and CF + IP. We tested the algorithms on two Human
Activity Recognition benchmarks, i.e., WESAD [8] and HHAR [9]. The former
is a dataset for stress and affect detection from wearable devices, while the
latter is a dataset for activity recognition. Both the datasets lend themselves
to adaptation to a federated scenario, since the data are equipped with a label
which denotes the user they were gathered from. Thus, each user corresponds
to one client in the federated setting.

Setup In WESAD, we used a subset of the available data, which consisted in 8
synchronized time-series of physiological data sampled at 700Hz by a chest-worn
device. Each sample had a label corresponding to one of the 4 expected cognitive
states of the user. In HHAR, we selected only the samples corresponding to the
LG Nexus4 smartphone (which has a sample rate of ∼200Hz). Each sample had
6 features corresponding to the axes of the accelerometer and the gyroscope of
the device, and a label denoting one of the 6 activities performed by the user.
Then, we split both the datasets to user-specific chunks (15 for WESAD, 9 for
HHAR), simulating the local, private data of the clients in the federated setting.
Each of the chunks was then normalized and split in non-overlapping sequences
of 700 samples for WESAD (1 second) and 400 samples for HHAR (∼2 seconds).
We further partitioned the datasets in a training-validation-test split of the users:
9-3-3 and 5-2-2 for WESAD and HHAR respectively. We used the validation
users to monitor the performance of the models and rank them in the model
selection, while the test split is used to assess the performance on clients joining
the federation after the training is over. For each experiment, first, we performed
a random search with 30 trials to select the configuration that performed best
on the given benchmark (the hyperparameter space is summarized by Table 1).
Then, we re-trained three instances of the selected configuration, and assessed
the empirical risk on the test users.

For both benchmarks, we conducted the experiments on two settings: cen-
tralized, where we assumed that all data from training users is available on a
single machine; federated, where each user corresponds to a client in the fed-
eration which learns from a local, private dataset. As summarized in Table 2,
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Table 1: Hyperparameters tested on the two benchmarks.

Dataset
Reservoir and CF method

Units ρ(Ŵ) Input Scaling α L2

WESAD {200,300,400} [0.3, 0.99) [0.5, 1) [0.1, 0.8] [1e−4
, 1]

HHAR {100, . . . , 500} [0.3, 0.99) [0.5, 1) [0.1, 0.5] [1e−4
, 1]

Dataset
IP FedIP

µ σ η Local epochs

WESAD 0 (0.005, 0.15) 0.01 {3, 5, 10}
HHAR 0 (0.005, 0.15) 0.01 {3, 5, 10}

Table 2: Results of the experiments on WESAD and HHAR datasets. In the
federated setting, CF only corresponds to the use of IncFed only, while CF +

IP corresponds to IncFed + FedIP. For each percentage of the users, we report
the mean and standard deviation of the test accuracy of each model. Best results
in the federated setting are highlighted in bold.

Setting
Training
Users

WESAD HHAR
CF only CF + IP CF only CF + IP

Centra-
lized

25% 75.63± 2.15 75.30± 1.52 75.94± 3.15 77.93± 1.39

50% 75.12± 0.39 74.44± 1.94 73.18± 5.32 80.32± 0.94

75% 75.10± 1.15 81.37± 1.47 79.58± 0.49 82.54± 0.62

100% 77.30± 1.29 82.48± 0.33 79.05± 0.13 83.61± 0.24

Federa-
ted

25% 75.24± 1.63 75.45± 2.20 75.50± 2.79 80.72± 0.99

50% 73.04± 0.70 75.92± 0.84 77.06± 0.43 82.24± 0.30

75% 75.64± 1.23 81.15± 0.26 80.67± 0.75 79.50± 1.01

100% 75.42± 0.78 80.42± 0.79 81.47± 0.77 82.09± 0.29

each setting was tested with different proportions of training users to assess the
performance of the algorithms under different availability of clients. We make
the code publicly available to reproduce all the experiments1.

Results Table 2 shows the test accuracy over three retraining runs for each
setting and percentage of the training users on both benchmarks. In the feder-
ated setting, the performance of the model significantly benefits from the use of
FedIP on both benchmarks. On WESAD, it is clear that IncFed suddenly meets
an upper bound which is independent on the number of users involved in the
training phase. This highlights that the dynamics of a reservoir initialized in a
näıve way does not allow to appropriately express features which are useful for
discriminating the correct label. Instead, with the use of FedIP, the performance
of the model grows with the number of users involved in the training phase, out-
performing the performance of IncFed by 5 accuracy points when involving all
the users in the training phase. On HHAR, instead, we can observe an opposite
trend from WESAD. While the performance of IncFed grows with the number
of users involved in the training phase, FedIP allows for a good generalization on

1https://github.com/vdecaro/federated-esn/
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the task with as little as 25% of users. Finally, by comparing the performance
of the federated setting with the one of the centralized setting (Table 2), we can
observe that our algorithm is only subject to a slight accuracy decrease due to
the approximation given by the model averaging, making the federated approach
almost equivalent to the centralized one.

4 Conclusions

In this work we extended Intrinsic Plasticity (IP), a method which adapts the
reservoir dynamics of ESNs with respect to the input sequence, to the federated
setting. Our algorithm, namely FedIP, is based on FedAvg, and is intended for a
client-server topology: in each round, clients perform E epochs of local update
via IP, and the server aggregates the updated gains and biases of the local model
into the global one. Experiments showed that the gradient-based nature of IP
suited the approach of FedAvg, and using FedIP for adapting the reservoirs in a
distributed manner improved significantly the performance of the global model
on both benchmarks. Furthermore, our federated algorithm achieved results
which are comparable to the ones of its centralized version, which highlights
robustness against the approximation applied by the model averaging.
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