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Abstract. Graph Neural Networks (GNNs) are nowadays widely used in
many real-world applications. Nonetheless, the data relationships can be
a source of biases based on sensitive attributes (e.g., gender or ethnicity).
Several methods have been proposed to learn fair graph node representa-
tions. In this work we extend NIFTY, an approach that exploits additional
terms in the loss function based on perturbing the input data to enforce
the fairness of the GNNs. In particular, we exploit a biased perturbation of
the adjacency matrix of the graph able to reduce the edge homophily. We
show the effectiveness of our approach in four real-world graph datasets.

1 Introduction

Recent developments in Machine Learning (ML) systems made it possible to
achieve or even surpass human performance in many real-life tasks. These
achievements are now possible thanks to the availability of huge amounts of data
that are used to train such ML models. Unfortunately, these high-performance
level allow these models to also inherit human biases hidden in the data. When
the decisions of these models may affect people’s life we cannot allow these bi-
ased behaviours. In particular, we would like our model to be fair, namely to
treat equally different subgroups of the population based on characteristics such
as gender or ethnicity, referred to as sensitive attributes. The problem is even
more challenging when the input data is complex (e.g., graphs) and black-box
models such as Graph Neural Networks (GNNs) need to be employed to achieve
satisfactory performance. Different methods have been proposed in literature to
learn fair graph node representations, mainly including additional terms in the
loss function to account for some definition of fairness [1, 2], or perturbing the
graph topology [3, 4] in a biased way. As a representative e of the first family of
methods, NIFTY [2] proposes that some of the additional terms can be based
on perturbing the input data such as node attributes (including the sensitive
attribute) or graph topology [2]. The latter methods are based on the intuition
that GNNs tend to smooth the learned representations of connected nodes, and
if the graph shows high homophily with respect to the sensitive attribute (i.e.,
nodes with the same value for the sensitive attribute tend to be connected), the
GNN may introduce inequalities in the learned representations.

In this paper, we propose to unify the two families of approaches. We start
from NIFTY and replace the random perturbations of the adjacency matrix
with a biased perturbation reducing edge homophily. Experimental results on
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four real-world datasets show that our proposal can improve different fairness
metrics compared to the original NIFTY formulation, while maintaining the
same computational complexity and the same level of predictive performance.

2 Background

Let us consider a graph G = {V, E, X,s} where V = {vg,...,v,_1} is the set
of nodes or vertices, E C V x V is the set of edges, X € R™*4 ig the matrix
of non-sensitive node features, and s € {0,1}" is the vector associating a value
for the binary (for sake of simplicity) sensitive feature to each node. We define
A € R™™ as the adjacency matrix of the graph.With N (v) we denote the set
of nodes adjacent to node v. Let also D € R™ " be the diagonal degree matrix
where d;; = ; ij-

A GNN is a model that exploits the structure of the graph and the informa-
tion embedded in feature vectors of each node in order to learn a representation
h, € R™ for each vertex v € V. The first works extending neural networks to
inputs in the graph domain [5, 6, 7] are based on the idea of aggregating the
representation of a node and its neighbors, either in a recursive or a feed-forward
(convolutive) way. This idea has been re-branded later as graph convolution. In
the last few years, several different GCs have been proposed. In this work we
build on top of a widely adopted graph convolutions, dubbed GCN [8], that is
defined as H = D"2 AD~2 X0, where A = A+ I and dij = E?:o a;;j. Usually,
GNNs stack multiple Graph Convolutional layers to consider wider topological
receptive fields.

The task we consider in this paper is node classification. Moreover, we would
like our learned hypothesis h to be fair according to some metric. A common
fairness metric is Statistical (or Demographic) Parity (SP), defined as: Agp =
P(g = 1|s = 0) — P(§ = 1],s = 1), where § indicates the predicted outcome
for a node (i.e., the output of the function h applied to the node). Another
common metric is Equal Opportunity (EO) [9], defined as: Ago = P(§ = 1ly =
1,5 =0)— P(§ = 1ly = 1,s = 1). The probabilities in both metrics are usually
estimated on the validation or test sets.

3 Related Works

In this section, we discuss the most relevant methods to enforce fairness on tasks
defined over graphs. The two main approaches to learn fair representations are:
(i) to define models that learn fair representations from biased input data and
(ii) methods that modify the input in order to make it less biased. For the
first approach, several proposed methods exploits adversarial learning [10, 11],
probabilistic approaches [12, 13], or specifically designed loss functions [14, 1].
In this work, we will exploit NIFTY (uNIfying Fairness and stabiliTY) [2]
that aims to learn both fair and stable node representations. The method gen-
erates several augmented versions of the input graph, in which the original node
attributes and edges are slightly perturbed, obtained by: (i) perturbing node
attributes as &, = x, +r o a, where r € {0,1}™ is a random masking vector
drawn from a Bernoulli distribution and « is sampled from a normal distribution,
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(ii) perturbing the sensitive attribute, modifying it to generate a counterfactual,
i.e. by flipping the sensitive attribute s in x,, and (i) exploiting a perturbed
adjacency matrix A = A o R, where R, € {0,1}™ is a random mask sample
from a Bernoulli distribution. The random mask removes some graph edges,
similarly to what happens by using Drop-Edge [15]. The proposed objective
function maximizes the similarity between the learned embedding of the origi-
nal graph nodes and their counterparts in the augmented graph, relying on a
siamese GNN encoder that generates the representations of each graph node
%, and its augmented version Z,. Then a predictor ¢ : R? — R? is used to
transform and match corresponding representations. The training minimizes
the following loss function: L = mén E,[(1 — A\)L] + AL?, where L° is the Bi-

nary Cross Entropy (BCE) loss, © are the trainable parameters, and L® is a
triplet-based objective function that optimizes the similarity between augmen-
tations of the same node, by reducing their cosine distance. It is defined as
L* = Ey[3(D(t(2), s9(Zy)) + D(t(2v), sg(2v))], where D is the cosine distance.
Finally, NIFTY normalizes the encoder weight matrix at each layer k to impose
an upper bound to the change of the original node embeddings.

As for the second approach to enforce fairness on graphs, i.e. to modify the
input graphs, EDITS [16] is a model-agnostic framework that ensures fairness
with attribute and structural debiasing. Other approaches focus on debiasing
the adjacency matrix only, using concepts from optimal transport [17] or dyadic
fairness [4]. Among these approaches, in this paper we exploit concepts from
Fairdrop, that we explain in detail. Fairdrop [3] is a biased edge dropout al-
gorithm to counter-act homophily (the principle that similar users interact at
higher rate than dissimilar ones) of the sensitive attribute to improve fairness in
graph embeddings. For every epoch of training, authors propose to: (i) compute
an n X n mask M encoding the edge homophily w.r.t. a sensitive attribute, i.e.
m;; = 11if s; # s;, 0 otherwise, (i) define M, a random perturbation of M,
as 1, j = m;; with probability  + &, or 1 —m; ; with probability  — 4, and
0 €10, %], and (i) drop edges from the original adjacency matrix according to

the computed perturbation: Aysq = Ao M. The delta parameter regulates the
level of fairness enforced: when § = 0, it drops random edges with a probability
p = %, while when § = %, it drops all the homophilous edges, keeping only
the heterophilous ones. Authors show that removing homophilous edges has a
positive effect on different fairness metrics.

4 Method

In this paper, we extend NIFTY [2] using a different algorithm to perturb the
graph structure, exploiting the research in input-debiasing methods. While in
NIFTY the perturbed adjacency matrix have approximately the same homophily
level as the original one, it has been shown that using a perturbation that is bi-
ased toward removing homophilous edges can be beneficial for the fairness of
the learned model [3]. We use a variation of FairDrop to generate the per-
turbation. In fact, FairDrop does not have a way to control the amount of
perturbation that is inserted, i.e., it is defined to consider all the edges. We
implement a variation that used another hyper-parameter, the drop rate, that
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specifies the ratio of edges that should be perturbed. More formally, given the
augmented adjacency matrix A constructed by NIFTY for a certain drop rate,

we define B4 = {(i,5)|(i,j) € E,a;; = 1} as the set of edges not dropped and
E~4 = {(i,)|(4,5) € E,a;; = 0} as the set of edges dropped. We consider
E~4 and the hyper-parameter §, and check whether in the set there are at least

a ratio of 0.5 + 9§ edges connecting nodes with the same value of the sensitive
attribute (homophilous). If not, we randomly replace some heterophilous edges

(i.e., edges connecting nodes wth different value for s) from E™4 and insert

them in E4, replacing them with homophilous edges from E“4. The number of
replaced nodes is given by the difference between the actual ratio of homophilous
edges dropped and the given 0.5 + 4. Clearly, when in the graph structure the
percentage of homophilous edges is already bigger than 0.5 + § % our exten-
sion doesn’t activate and reduces itself exactly to NIFTY. On the contrary, the
higher the value of §, the more homophilous links are removed from the adja-
cency matrix. In this way, the augmented adjacency matrix will contain fewer
homophilous links, while maintaining the majority of the edges in the original
perturbation from NIFTY: the main difference is given by the selection of edges
added and removed.

5 Experimental Evaluation

In our experiments, we considered the version of NIFTY using Graph Convo-
lutional Network (see Section 2) as model backbone. We fixed the network
hyper-parameters as per the NIFTY paper, while we explored different values
for the drop-rate (Dr) and ¢ parameters. To study the behavior of our method
with different hyper-parameter configurations, we report three values for each
of them. Note that the values of § have to be chosen considering the actual ho-
mophily level of the dataset. Only for the German dataset [2], to obtain results
that were closer to the ones reported in literature we increased the number of
epochs from 1000 to 2500.

Datasets. We tested our solution on four graph datasets. German credit graph
has 1000 nodes representing clients in a German bank, connected based on the
similarity of their credit accounts; clients are to be classified as good or bad credit
risks and the sensitive attribute is their gender. (homophily level: 80.92%).
Recidivism graph (Bail) [2] has 18876 nodes representing defendants who got
released on bail, connected based on the similarity of their criminal records and
demographics; defendants are to be classified as releasable or not releasable and
the sensitive attribute is their ethnicity. (homophily level: 53.61%). Credit
defaulter graph [2] has 30000 nodes representing individuals, connected based
on the similarity of their spending and payment patterns; the task is to predict
whether an individual will default on the credit card payment or not and the
sensitive attribute is their age. (homophily level : 95.99%). Finally, we consider
a dataset where, differently from the others, edges are not generated based on
some heuristics. Pokec [10] is a dataset representing 66569 users in a social
network, connected by friendship relationships; the task is to predict the working
field, and the sensitive attribute is the users geographical region. (homophily
level: 95.58%).

500



ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1.
Available from http://www.i6doc.com/en/.

Metrics. We use AUROC (AUC) to evaluate the predictive performance for
the downstream task of node classification. To measure group fairness, we use
Statistical Parity (SP) and Equal Opportunity (EO), where probabilities are
estimated on the test set. The third fairness metric we use is Counterfactual
Fairness (CF), where the score is calculated as the percentage of test nodes for
which the predicted label changes when flipping the node’s sensitive attribute.
We report the fairness metrics as percentages from 0% (never discriminating) to
100% (always discriminating), so the lower the better.

Results and Discussion Tables 1 and 2 present our experimental results. In
German (Table 1 left) we see that our method improves on all the considered
fairness metrics (SP, EO, and CF) compared to the baseline NIFTY (rows with
0 = 0), where § = 0.4 seems to provide the best results. On Pokec (Table 1
right), we see a similar pattern for SP and CF, while EO improves compared to
the baseline for drop rate 0.1 and 0.2. Note however that our method achieves the
overall lowest value on EO. Bail (Table 2 left) shows a more complex behavior,
where with Dr = 0.1 our method improves SP, with Dr = 0.25 it improves EO
and CF. Dr = 0.25 turns out to bit too high for this dataset, where the proposed
method improves EO but to a lesser extent compared to 0.25. Finally in Credit
(Table 2 right) our method consistently improves all the fairness metrics. In all
cases, the decrease in AUC of our method compared to the baseline is always
negligible. From the results, it is clear that our method is a powerful extension
to NIFTY, being able to significantly improve the fairness of the resulting model
for all the metrics and in all the considered datasets. The choice of § and Dr
are however crucial to obtain satisfying results.

6 Conclusions and future works

In this paper, we proposed an extension of NIFTY, a method to compute fair
graph node representations. Our proposal is inspired by recently proposed biased
graph structure modification methods. We have shown the effectiveness of our
approach in four real-world graph datasets. In the future, we will study meth-
ods to automatically set optimal values for the hyperparameters of our method
and we will study in more depth the changes in representations induced by our
proposal, to understand in which cases it results more useful.

German Pokec
Dr & AUC Asp AEro CF Dr & AUC Asp Ago CF

0.01 0 71.05 2.19 3.12 0.30 0.1 0 67.24 0.63 0.70 0.13
+0.56  £1.52 +1.57 +£0.15 +0.43 +£0.06 +0.28 £0.03

.35 71.05 2.15 3.04 0.20 AT 66.42 0.53 0.34 0.10

+0.57 £1.03 +£1.11 +0.28 +0.12  £0.02  +£0.02 +0.01

4 70.63 1.34 2.35 0.43 499 66.94 0.57 0.17 0.09

+0.38 £0.70 +1.06 +£0.31 +0.12  £0.05 +0.07 £0.01

0.1 0 68.71 2.87 2.74 0.60 0.2 0 66.52 0.62 0.56 0.13
+1.06 £1.33 +1.26 +£0.18 +0.60 +£0.17 +0.36 £0.03

.35 69.45 2.15 2.36 0.40 AT 66.38 0.48 0.47 0.11

+1.01 +1.49 £1.67 £0.28 +0.01 +0.02  +£0.12  £0.01

4 67.17 0.85 0.81 0.50 499 66.39 0.66 0.74 0.08

+1.47 £0.57 £0.56 £0.41 +0.04 +£0.06 +0.16 £0.01

Table 1: Comparison between NIFTY (rows with 6 = 0) and our method on
German and Pokec datasets.
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Bail Credit

Dr 5 AUC ASP AEO CF Dr é AUC ASP AFEO CF
0.1 0 81.66 2.26 0.79 1.04 0.01 0 72.13 12.66 10.30 0.78
+0.08 +0.19 +0.36  £0.06 +0.01  4+0.94 +0.88 +0.75

.25 82.85 1.40 1.05 1.37 A7 72.09 11.72 9.45 0.08
+0.37  +0.18 +0.10 +0.10 +0.01  +0.02 +0.02 +0.01

A4 83.24 1.67 1.09 1.21 .499 72.09 11.73 9.45 0.10
4+0.14 +0.18 +0.25 +0.08 +0.02 4+0.06 +0.05 +0.02

0.25 0 84.28 2.09 1.11 1.61 0.2 0 72.15 12.84 10.54 0.84
+0.12  4+0.18 +0.59  £0.20 +0.00 4+0.02 £0.03 +£0.01

.25 83.51 2.28 0.61 1.36 A7 72.06 11.73 9.45 0.12
+0.14  +0.18 +0.31  +0.09 +0.03 +£0.05 +£0.04 +£0.03

4 83.97 2.30 0.44 1.24 499 72.04 11.75 9.46 0.11
4+0.08 £0.15 +£0.12  +0.07 +0.04 4+0.03 £0.01 +£0.03

Table 2: Comparison between NIFTY (rows with ¢ = 0) and our method on
Credit and Bail datasets.
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