
Efficient Learning in Spiking Models

Alexander Rast1, Mario Antoine Aoun2, Eleni Elia1 and Nigel Crook1

1- Oxford Brookes University - School of Engineering, Computing, & Mathematics
Wheatley Campus, Wheatley, Oxford OX33 1HX - United Kingdom

2- Montreal, QC, Canada

Abstract. Spiking neural networks (SNNs) form a large class of neural
models distinct from ‘classical’ continuous-valued networks such as multi-
layer perceptrons (MLPs). With event-driven dynamics and a continuous-
time model, in contrast to the discrete-time model of their classical coun-
terparts, they offer interesting advantages in representational capacity and
energy consumption. However, developing models of learning for SNNs
has historically proven challenging: as continuous-time systems, their dy-
namics are much more complex and they cannot benefit from the strong
theoretical developments in MLPs such as convergence proofs and optimal
gradient descent. Nor do they gain automatically from algorithmic im-
provements that have produced efficient matrix inversion and batch train-
ing methods. Research has focussed largely on the most extensively studied
learning mechanisms in SNNs: spike-timing-dependent plasticity (STDP).
Although there has been progress here, there are also notable patholo-
gies that have often been solved with a variety of ad-hoc techniques. A
relatively recent interesting development is attempts to map classical con-
volutional neural networks to spiking implementations, but these may not
leverage all the claimed advantages of spiking. This tutorial overview looks
at existing techniques for learning in SNNs and offers some thoughts for
future directions.

1 Spiking neural models: what and why?

A neural network of any type is a model: a mathematical approximation of some
complex system. But because the system in question can achieve useful compu-
tation, neural models have always had a dual rôle: for computing systems and for
biological modelling. These 2 different starting points have led to 2 contrasting
model architectures. Computer scientists developed abstract models that act as
discrete-time numeric function approximators: ‘classical’ neural networks such
as multilayer perceptrons, which were later applied to high-level biological mod-
elling. Computational neuroscientists, meanwhile, worked with continuous-time
differential systems: ‘spiking’ neural networks which subsequently generated in-
terest amongst the computer scientists. Spiking networks encode information in
transient impulses or events - spikes - that propagate through the continuous-
time system asynchronously. Given their origins, by design, such networks can
more faithfully approximate real biological dynamics, and thus they are a nat-
ural fit for computational neuroscience, whether the goal is to understand the
actual function of the brain or to derive computational models that leverage the
known advantages of biology-like computing. It is known that because spikes

601

ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9.
Available from http://www.i6doc.com/en/.

can encode 2 dimensions of information: frequency and phase, on the same sig-
nal, they have higher computational capability than classical neural networks at
the same level of network complexity. So there are compelling reasons to look
at spiking networks. But like any other neural network, to be useful a spiking
network needs to be able to learn, and this introduces the question of how does
(or can) a spiking network learn improved internal representations or computa-
tional capabilities from inputs? This tutorial provides an outline of approaches
and some idea of what the relevant decisions are.

2 Model neurons

Before getting into learning mechanisms and rules as such, it is necessary to
discuss briefly the various ‘flavours’ of model neuron. The starkly contrasting
goals of different network models have important consequences for neuron model
choice.

Leaky Integrate-and-Fire The LIF model is the oldest, simplest, and most
widely used of all models, using a single relaxation term. A major advantage is
that unlike most other models, it can be solved in closed form.

Adaptive Exponential Integrate-and-Fire The so-called AdEx model
is also popular, being relatively simple and offering richer dynamics such as
intrinsic bursting and resonant neurons, using an adaptive threshold.

Izhikevich This is a quadratic differential model with rich dynamics, yet a
simple computational form. Näıvely implemented, it can lead to instabilities,
but good implementations are particularly suitable for temporally-dependent
computing. The model is, however, less popular amongst neuroscientists.

Hodgkin-Huxley The H-H model accurately reproduces the biophysics of
neurons, at the cost of introducing complex nonlinear ODEs that require accu-
rate solvers. Although popular amongst neuroscientists, it has seen few compu-
tational uses, given the existence of simpler models that can reproduce similar
dynamics.

Spike-Response Model The SRM is one of a class of extremely simple
models for computational applications. An SRM neuron is basically a spike
counter which outputs when the count reaches some value. This makes for
an almost trivial digital implementation, the major disadvantage being no real
dynamics.

Although model choice can become a vexed issue, here, we summarise the
‘established wisdom’. The LIF model is the model of choice unless it is known
that specific temporal effects like bursting and resonance are necessary. If such
effects are needed, computational applications must consider AdEx or Izhikevich
but beware of stability considerations. Neurobiological applications may demand
Hodgkin-Huxley for rigour, but this is only crucial if the low-level neuronal
dynamics are the subject of enquiry. We now turn to the question of model
synapses, which is the basis for learning.

602

ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9.
Available from http://www.i6doc.com/en/.

3 Model synapses

Synapses, in virtually all neural networks, have 2 distinct roles: they perform a
computation on the input to convert an input spike event to an output current
injection, typically by some scaling that corresponds to a ‘weight’; and they also
realise a learning rule that modifies the conversion itself. They may attempt to
be biologically realistic or not: the former implement, like neurons, some real
temporal dynamics; the latter may be a simple discrete output value or counter.
Synapses are typically either excitatory, in fast (‘AMPA’) or slow (‘NMDA’)
variants, or inhibitory, again with fast (‘GABA-A’) and slow (‘GABA-B’) types.
Synapses are rarely bipolar, except for some computational models that discard
biological realism.

Extremely generally, synapses result in an excitatory post-synaptic potential
(EPSP) of the following form, taken from [1]: EPSPn = AseRnun, where index
n indicates the nth incident spike, Ase is the ‘absolute’ synaptic efficiency or
weight, Rn is the total available ‘resources’ and un is the transmission dynamics.
All major classes of biological synapse, however, follow transmission dynamics
(the ‘channel kinetics’) that feature an abrupt rise at spike onset to some high
output, and a comparatively slower relaxation (often exponential) to their resting
equilibrium. These are modelled typically either using synaptic conductances,
solving some system of ODEs much like neurons (‘conductance-based’ synapses)
or various forms of simple exponential rules - often with a pair of time constants
for onset and relaxation - (‘current-based’ synapses).

Given the general form of a neuron model cdV
dt

= −im + is, where V is the
membrane voltage, c the membrane capacitance, im the membrane current and
is the synaptic current, a typical conductance-based model has the form

dP

dt
= Rn(1− P)− βgP,

is =
1

c
gsP (V − Es)

Conductance-based

where P is the synapse open channel probability, gs the fully-open synaptic
conductance, and Es is the synaptic reversal potential. βg is a constant. It can
be seen that Ase =

1
c
gs.

A typical current-based model has the form

dis

dt
= Rn(Ase − is)− βiis Current-based

where again, βi is a constant. Learning (at this level usually called plasticity)
usually corresponds to some update to either the Ase term (‘ionotropic’) which
updates the weight, or Rn (‘metabotropic’) which updates a proxy variable that
describes the surrounding resource availability shared between nearby synapses.
In typical synapses Rn is at its resting value when the synapse is inactive, drop-
ping quickly to 0 when the synapse is fully open, and recovering slowly with
some time constant larger than 1

β
. Occasionally, computational learning models

may update un, but as noted, this is not typical in neurobiological models.

603

ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9.
Available from http://www.i6doc.com/en/.

3.1 Plasticity mechanisms

Most plasticity rules use some form of Hebbian [2] learning dependent on pre/
post-synaptic spike pairings. Gerstner, et al.[3] introduce one of the earliest such
models. But overwhelmingly the most well-known, well-used, and well-studied
plasticity rule is spike-timing-dependent plasticity (STDP)[4][5], an ‘ionotropic’
Hebbian rule deriving from the relative timing of pre- and post-synaptic spikes.
The original ‘spike-pair’ rule has spawned several further variants - ‘triplet’ [6]
and even ‘quadruplet’ STDP which attempt to account for more context. How-
ever, the method of computing the magnitude of the update, once a synapse is
eligible for modification, leads to particularities in the dynamics.

So-called ‘additive’ STDP [7] leads to a distinct bistable distribution of
weights, which can be useful in ‘competitive’ networks such as a winner-take-all
circuit, but creates problems in other types, e.g. convolutional-style networks,
where high expressivity is needed. ‘Multiplicative’ STDP [8], instead of up-
dating the weight by a fixed quantity, scales the update proportional to the
current weight of the synapse, largely solving issues with bistability. Multiplica-
tive STDP, however, can be sensitive to data order and distribution and does
not encourage synapses to specialise to a given input. The result can be a ‘pool’
of undifferentiated synapses [9].

3.2 Learning rules

At a network level, plasticity mechanisms drive larger-scale learning rules, which
follow the traditional division between supervised and unsupervised rules. Fun-
damentally, Hebbian mechanisms are unsupervised learning rules by themselves,
but they can also be used in supervised contexts by providing a strong driving
input (and there is evidence e.g. in Purkinje cerebellar neurons [10] that such
supervised methods occur in biology as well). Numerous specific algorithms have
been proposed. Table 1 lists some important and influential SNN learning rules.

3.2.1 Supervised rules

One early trend in the development of supervised learning rules for SNNs was a
series of attempts to map the existing backpropagation [19] algorithms designed
for continuous-valued (nonspiking) neurons to spiking networks. A simple ap-
proach is to transfer the weights directly from a trained nonspiking network to
an equivalent rate-coded spiking representation [20]. Whilst such a method may
not really represent a true spiking learning algorithm, progress has since been
made in mapping backpropagation-like algorithms explicitly to spiking networks
using both rate [21] and temporal [11] coding, though these are unlikely to be
biologically plausible.

A very different direction is represented by models that use a ‘training’ signal,
essentially an auxiliary input to the network with its own spike pattern. Such
models typically rely on coincident firings of the training signal and the input to
potentiate or depress synapses according to STDP-like mechanisms. Arguably

604

ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9.
Available from http://www.i6doc.com/en/.

Learning Algorithm Year Approach

Supervised
SpikeProp [11] 2002 Back Propagation
ReSuMe [12] 2005 STDP & Delta Rule
SPAN [13] 2013 Delta Rule and Kernel
FOLLOW [14] 2017 Local learning combines postsynaptic er-

ror and presynaptic activity
EventProp [15] 2021 Gradient based learning allowing back-

propagation through discrete spike events
Unsupervised

Liquid State Machine [16] 2002 Single-layer learning with random ‘reser-
voir’. Amenable to supervised training

Winner-Take-All [17] 2015 Competitive learning in groups
Stable STDP [18] 2020 2-factor, multiplicative STDP

Table 1: Historical and Fundamental Spiking Learning algorithms

the most well-known of these approaches is the ReSuMe [12] model, which uses
a single training input to learn specific sequences by generating an input when a
spike ‘should’ have occurred. Though not unusually efficient, accuracy has been
improved in successive models [22].

3.2.2 Unsupervised rules

An interesting idea recently explored was the use of an unsupervised learning step
to ‘pre-train’ a convolutional spiking model which was then ‘fine-tuned’ using
conventional backpropagation [23]. However, the majority of unsupervised rules
have been based on competitive or chaotic dynamics. Such properties have been
used in ‘reservoir’ computing models (of which the Liquid State Machine [16] is
the most well-known example) to yield competing delay paths, and in winner-
take-all circuits [17] where individual neurons compete. These rules exploit
phase transitions in the underlying dynamics to encourage individual neurons or
groups to compete for stable regions in state space.

3.2.3 Nonlinear Neural Dynamics

Such phase transitions, and the role of dynamics in the overall function of the
network, is the focus of another area of investigation: Nonlinear Neural Dynam-
ics. Two of the most common roles found in the literature are communication
and representation. Weakly connected chaotic systems have a strong propen-
sity to synchronise with each other. Synchronisation has been studied between
individual cells and between brain networks [24]. In these cases, learning is
often facilitated by modifying the connection weights between cells and/or sub-
networks that are exhibiting similar dynamic behaviours.

The properties of chaos have also been used to explore the representation of

605

ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9.
Available from http://www.i6doc.com/en/.

Fig. 1: Chaotic Liquid State Machine. Multiple spiking inputs (S1 to Sn) are
to be encoded by a pool of neurons (N1 to Nn). These synchronise to a single
output (H) which encodes the inputs in a saved spike train. When a New input
arrives (dashed), the pool generates a corresponding output (S’) that is compared
to the Hypothesis (H) using a similarity measure.

state or information in neural systems. Two general approaches have been taken.
One is to use the rich nonlinear dynamics of chaos to search a solution space
or amplify the differences between input signals [25]. Here the learning takes
place in the connection weights between the chaotic network and a ‘readout’
layer of simple linear neurons. The second approach is to model chaotic systems
that can be easily controlled or ‘nudged’ into Unstable Periodic Orbits (UPOs)
[26], or attractor sub-spaces [27]. These, in turn represent context-specific input
responses that can be learnt by weight changes that affect the parameters of
the chaotic system - a combination of communication and representation. An
example is the Chaotic Liquid State Machine [28] (Fig 1).

4 Considerations and Recommendations

As has been seen, spiking neural networks are used in 2 distinct domains: for
biological modelling and for computing applications. There is also a third, cross-
disciplinary domain, that of using networks in a practical application (e.g., con-
trolling an autonomous robot) with the expectation that it may inform under-
standing of comparable mechanisms in biology.

Modern computational neuroscience is typically interested in modelling at
large scale, where computational efficiency is critical, but there is typically no
requirement that the computation itself perform anything useful. High-level
learning rules are immaterial, and the focus in on the choice of plasticity mech-
anism. Thus model choice, as a practical matter, can be distilled to one basic
recommendation: choose the simplest model you can that meets the goals of the

606

ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9.
Available from http://www.i6doc.com/en/.

study. In many cases, this can simply be ‘vanilla’ additive or multiplicative
STDP. Only where the exact kinetic of the plasticity rule itself is the subject
of investigation are more complex dynamics typically appropriate. These will,
naturally, vary according to the hypotheses of the study itself. Similar consid-
erations apply to the neuron model, and it is unsurprising that the majority of
large-scale studies have used LIF neurons (in spite of known limitations).

In the cross-domain case, much has been achieved with straightforward LIF-
STDP combinations; where there is design variability, it tends to have come in
the neuron model, with adaptive-exponential, Izhikevich, and indeed Hodgkin-
Huxley models all having been attempted. Many approaches have also employed
dynamic global parameters, as proxies for neuromodulatory processes, and these
have occasionally yielded interesting further network behaviours, although the
impact on task behaviour has been more difficult to assess. Curiously little
work, however, has been done comparing different pairings of synaptic model
with neuron model; this is clearly a rich field for future studies.

In the pure computational domain, although significant improvements in
learning performance have been achieved over time, spiking neural networks as
yet have not been able to consistently outperform conventional (graded-response)
neural networks when it comes to accuracy. One may then wonder, what is the
use of spiking networks for real applications? The customary response of most
works has been ‘accuracy is not the only metric of interest’, and some obvious
cases can be enumerated and recommendations given about learning rules.

Spatiotemporal Applications Where data has spatiotemporal character-
istics (e.g. video scene segmentation), the learning rule needs to be able to
capture phase-frequency relationships. Additive STDP is typically unsuitable.
Successful models often use global neuromodulatory parameters to yield good
results. An intriguing area for future work is in merging the ideas from complex-
valued neural networks with spiking learning [29].

Power-Limited Embedded Systems Obviously, in cases where power ef-
ficiency is paramount (e.g. microdrones), the learning rule and plasticity model
should be as simple as possible whilst permitting fast learning; WTA networks
with additive STDP are an example of an appropriate choice.

Real-Time Systems In a real-time context, where instant response is cru-
cial, what is needed is the fastest synaptic update possible. Typically this will be
done asynchronously, thus the learning rule needs to be continuous rather than
batch-driven. Unsupervised methods are much simpler to apply, and an under-
lying plasticity rule like spike-pair rule (using the fewest number of pairings to
compute the update), is likely to yield highest-performance results.

Neuromorphic Hardware Platforms When the target hardware is itself
a ‘neuromorphic’ chip [30], specifically designed and optimised to implement
spiking networks, large efficiency gains may be possible, typically with some
constraints on synaptic model choice. Implementing a new model on-chip may
require specialist familiarity with the device; for programmable chips, the most
practical recommendation is: use the oldest learning rule (i.e. the one first
implemented on-chip). It is likely to be the most mature, and may be included

607

ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9.
Available from http://www.i6doc.com/en/.

Object
Detection

• Leaky ReLU,
normalization, signed
neuron, imbalanced
threshold

• A first spiked-based
object detection
model, less energy
than Tiny YOLO

Spiking YOLO [33]

Object
Tracking

• Siamese CNN,
phase-coded LIF

• Very low energy
consumption,
similarity estimation

SiamSNN [34]

Optical
Flow

Prediction

• Spike based
backpropagation, IF
neuron

• Discrete and
asynchronous event
streams

Spike-FlowNet [35]

Mapless
Navigation

• Policy Gradient RL,
backpropagation

• Energy efficiency,
mapped to
neuromorphic
hardware

SDDPG [36]

Fig. 2: Recent Energy-Efficient SNN algorithms (Selected from [32])

in standard libraries.
The ‘Red AI’ relation [31] introduces a simple metric for energy efficiency:

Cost(R) ∝ E ·D ·H (1)

where Cost(R) is the total (energy) cost, E is the (mean) energy cost per ex-
ample, D is the size of the dataset and H is the number of hyperparameters
(assuming sweeps will be made in the course of training over different tuning
hyperparameters). Algorithms which reduce any of factors E, D or H can thus
yield large improvements in overall cost. The presence of the H term indicates
the importance of formal methods for hyperparameter estimation, as a future
research topic. More generally, we may estimate for the total energy cost as:

Ẽt = DSNw(N̄uEuF̄u) (2)

where Ẽt is the total cost, DS is the size of the state space, Nw the number
of weights in the network, N̄u the mean number of atomic weight updates per
state-space change, Eu is the energy per atomic (weight) update, and F̄u is the
mean fraction of weights updated per state-space change. Most efficient spiking
implementations concentrate on N̄u and Eu since these are typically the most
subject to algorithmic variation. Fig. 2 gives some recent SNN algorithms which,
according to [32], are claimed to be energy efficient by their authors.

5 Conclusions

Surveying the ‘landscape’ of efficient learning for spiking networks, it is clear
for the moment that supervised methods that attempt to leverage the gains of
‘classical’ machine learning techniques still prevail, despite evidence that such
approaches may not be energy efficient. There is clearly some gain to be had in
reducing reliance on hyperparameter sweeps through better formal methods, and
further gains in developing learning algorithms that quickly converge on near-
optimum solutions, reducing the crucial N̄u term. Equally, however, unsuper-

608

ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9.
Available from http://www.i6doc.com/en/.

vised methods remain underdeveloped, or perhaps it should be said that efforts
have produced a kaleidoscope of different ad-hoc techniques with relatively min-
imal formal theory. Again, the need for stronger formal theoretical development
is very clear. Fundamentally, however, biological learning is effective, even in
large state spaces, with far smaller de facto datasets than modern deep learning
networks need, strongly suggesting the existence of learning rules with orders-of-
magnitude better N̄u performance. Methods based on control of noisy chaotic
systems hold significant promise here, and deserve further exploration. In the
interim, however, use of supervised methods in power-constrained or real-time
systems, where modern deep learning methods are poorly suited, is to be en-
couraged, such as control of autonomous flying drones. Overcoming problems in
such practical applications could be a spur to future theoretical development, po-
tentially alongside computational neurobiology experiments, yielding advances
that help to ‘crack’ the larger problem of efficient learning. Much needs to be
understood, but the existence proof is out there, it only awaits further insights,
some of which are sure to come from research in spiking neural networks.

References

[1] H. Planert et al. Dynamics of Synaptic Transmission between Fast Spiking Interneu-
rons and Striatal Projection Neurons of the Direct and Indirect Pathways. J. Neurosci.,
30(9):3499–3507, 2010.

[2] D. O. Hebb. The Organization of Behavior, chapter 4, pages 60–78. Wiley, New York,
NY, 1949.

[3] W. Gerstner et al. A Neuronal Learning Rule for Sub-millisecond Temporal Coding.
Nature, 383(6595):76–78, 1996.

[4] C.Q. Bi and M.M. Poo. Synaptic Modifications in Cultured Hippocampal Neurons: De-
pendence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type. J. Neurosci.,
18(24):10464–10472, 1998.

[5] H. Markram and P. Tsodyks. Redistribution of Synaptic Efficacy Between Neocortical
Pyramidal Neurons. Nature, 382(6594):807–810, 1996.

[6] J.-P. Pfister and W. Gerstner. Triplets of Spikes in a Model of Spike-Timing Dependent
Plasticity. J. Neurosci., 26(38):9673–9682, 2006.

[7] S. Song, K. D. Miller, and L. F. Abbott. Competitive Hebbian learning through spike-
timing dependent synaptic plasticity. Nature Neuroscience, 3:919–926, 2010.

[8] M. C. W. van Rossum, G. Q. Bi, and G. G. Turrigiano. Stable Hebbian Learning from
Spike Timing-Dependent Plasticity. J. Neurosci., 20(23):8812–8821, 2000.

[9] M. Gilson and T. Fukai. Stability versus Neuronal Specialization for STDP:Long-Tail
Weight Distributions Solve the Dilemma. PLoS One, 6(10), 2011.

[10] D. Jaeger and J. M. Bower. Synaptic Control of Spiking in Cerebellar Purkinje Cells:
Dynamic Current Clamp Based on Model Conductances. J. Neurosci., 19(14), 1999.

[11] S.M. Bohte, J.N. Kok, and H. La Poutre. Error-backpropagation in temporally encoded
networks of spiking neurons. Neurocomputing, 48(1-4):17–37, 2002.

[12] F. Ponulak and A. Kasiński. Supervised Learning in Spiking Neural Networks with Re-
SuMe: Sequence Learning, Classification, and Spike Shifting. Neural Comput., 22(2):467–
510, 2010.

[13] A. Mohemmed et al. Training spiking neural networks to associate spatio-temporal input–
output spike patterns. Neurocomputing, 107:3–10, 2013.

609

ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9.
Available from http://www.i6doc.com/en/.

[14] A. Gilra and W. Gerstner. Predicting non-linear dynamics by stable local learning in a
recurrent spiking neural network. eLife, 6:e28295, 2017.

[15] T.C. Wunderlich and C. Pehle. Event-based backpropagation can compute exact gradients
for spiking neural networks. Scientific Reports, 11(1):12829, 2021.

[16] W. Maass, T. Natschlager, and H. Markram. Real-time computing without stable states: a
new framework for neural computation based on perturbations. Neural Comput., 14:2531–
2560, 2002.

[17] P. Diehl and M. Cook. Unsupervised learning of digit recognition using spike-timing-
dependent plasticity. Front. Comput. Neurosci., 9:99–113, 2015.

[18] F. Paredes-Vallés, K. Y. W. Scheper, and G. C. H. E. de Croon. Unsupervised Learning
of a Hierarchical Spiking Neural Network for Optical Flow Estimation: From Events to
Global Motion Perception. IEEE T. Patt. Anal. Mach. Intell., 42(8):2051–2064, 2020.

[19] D. Rumelhart, G. Hinton, and R. Williams. Learning internal representations by error

propagation, chapter 8, pages 318–362. MIT Press, Cambridge, MA, USA, 1986.

[20] P. O’Connor et al. Real-time classification and sensor fusion with a spiking deep belief
network. Front. Neurosci., 7(178), 2013.

[21] J. H. Lee, T. Delbruck, and M. Pfeiffer. Training Deep Spiking Neural Networks using
Backpropagation. Front. Neurosci., 10, 2016.

[22] A. Taherkhani et al. A Supervised Learning Algorithm for Learning Precise Timing of
Multiple Spikes in Multilayer Spiking Neural Networks. IEEE T. Neural Netw. Learn.

Syst., 29(11), 2018.

[23] C. Lee et al. Training Deep Convolutional Neural Networks With STDP-Based Unsuper-
vised Pre-training Followed by Supervised Fine-Tuning. Front. Neurosci., 12, 2018.

[24] S.P. Kuo, G.W. Schwartz, and F. Rieke. Nonlinear spatiotemporal integration by electrical
and chemical synapses in the retina. Neuron, 90(2):320–332, 2016.

[25] R. Legenstein and W. Maass. Edge of chaos and prediction of computational performance
for neural circuit models. Neural networks, 20(3):323–334, 2007.

[26] N. Crook. Nonlinear transient computation. Neurocomputing, 70(7-9):1167–1176, 2007.

[27] K. Aihara, T. Takabe, and M. Toyoda. Chaotic neural networks. Phys. Lett. A, 144(6-
7):333–340, 1990.

[28] M.A. Aoun and M. Boukadoum. Chaotic liquid state machine. International Journal of

Cognitive Informatics and Natural Intelligence (IJCINI), 9(4):1–20, 2015.

[29] A. Baranski and T. Froese. Efficient Spike Timing Dependent Plasticity Rule for Complex-
Valued Neurons. In Proc. AILIFE 2021: 2021 Conf. Artific. Life, 2021.

[30] C. D. Schuman et al. Opportunities for neuromorphic computing algorithms and appli-
cations. Nature Comput. Sci., 2:10–19, 2022.

[31] R. Schwartz, J. Dodge, N.A. Smith, and O. Etzioni. Green AI. Communications of the

ACM, 63(12):54–63, 2020.

[32] K. Yamazaki et al. Spiking neural networks and their applications: A review. Brain

Sciences, 12(7):863, 2022.

[33] S. Kim et al. Spiking-YOLO: Spiking Neural Network for Energy-Efficient Object Detec-
tion. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages
11270–11277, 2020.

[34] Y. Luo et al. SiamSNN: Siamese Spiking Neural Networks for Energy-Efficient Object
Tracking. In Int. Conf. Artific. Neur. Netw., pages 182–194. Springer, 2021.

[35] C. Lee et al. Spike-FlowNet: Event-Based Optical Flow Estimation with Energy-Efficient
Hybrid Neural Networks. In European Conference on Computer Vision, pages 366–382.
Springer, 2020.

[36] G. Tang, N. Kumar, and K.P. Michmizos. Reinforcement co-Learning of Deep and Spiking
Neural Networks for Energy-Efficient Mapless Navigation with Neuromorphic Hardware.
In 2020 IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS), pages 6090–6097. IEEE, 2020.

610

ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9.
Available from http://www.i6doc.com/en/.

	2023front
	AllPapers
	Wednesday
	ES2023-4-2
	ES2023-51-3
	ES2023-145-3
	ES2023-66-15
	Introduction
	Methods
	Graph Neural Network Module
	Convolutional Transformer Module
	Two-Module Meta-Learning Framework
	Details of Model Training and Implementation

	Results and Conclusion

	ES2023-35-3
	Introduction
	Related Work
	The HMM4G Model
	Experiments
	Results
	Conclusions

	ES2023-27-2
	Introduction
	Background on tropical algebra
	Approximation capabilities of GNNs
	Conclusion

	ES2023-32-5
	ES2023-73-3
	Introduction
	Related work
	Proposed method
	Problem and notations
	Model architecture

	Experiments
	Conclusions and future work

	ES2023-55-5
	Introduction
	Problem Setup
	Concept Drift and Setup
	Related Work

	Drifting Features
	Experiments
	Conclusion and Further Work

	ES2023-127-2
	ES2023-136-4
	ES2023-151-4
	ES2023-147-2
	ES2023-148-4
	Introduction
	Feature Removal in Dynamic Environments
	Experiments
	Conclusion

	ES2023-158-3
	Introduction
	Intensity and Transversal shift in Hyperspectral Data
	Datasets
	Robustness under sensor shifts
	Robustifying Training
	Conclusion

	ES2023-18-3
	ES2023-134-2
	ES2023-16-2
	ES2023-5-1
	Context
	State of the Art
	The contributions of the ESANN special session
	Conclusions

	ES2023-56-2
	ES2023-164-2
	Introduction
	FMN Attacks with Hyperparameter Optimization
	Experiments
	Conclusions and Future Work

	ES2023-125-2
	ES2023-29-2
	ES2023-115-2
	ES2023-54-3
	Multiview data and late fusion clustering
	A mixture of stochastic block models
	Simulation study
	Conclusive remarks

	ES2023-152-2
	ES2023-91-2
	ES2023-42-4
	ES2023-163-3
	ES2023-165-2
	ES2023-30-4
	ES2023-33-2
	Introduction
	Problem Formulation
	Differentiable Hyperbox-Based Classification
	Experiments and Results
	Experimental Design
	Results

	Conclusion

	ES2023-37-2
	Introduction
	Model Architecture
	Self-Reinforcement Attention (SRA block)

	Experiments
	Qualitative Results
	Quantitative Results

	Conclusion

	ES2023-90-2
	ES2023-89-2
	ES2023-182-2
	ES2023-78-3
	ES2023-13-2
	Blank Page

	Thursday
	ES2023-2-1
	ES2023-99-4
	Introduction
	Quantum Algorithm for Variance Estimation
	Hybrid Quantum Feature Selection
	Experiments
	Conclusion

	ES2023-93-3
	Introduction
	Logarithmic Quantum Forking
	Quantum Forking for AI
	Discussion
	Conclusion

	ES2023-108-2
	ES2023-22-3
	Introduction
	Quantum Reinforcement Learning
	Experiments and Results
	Frozen Lake
	Scalability using Grid Worlds
	Cart Pole
	Noise
	Lane Change

	Conclusion

	ES2023-3-1
	ES2023-77-2
	ES2023-61-2
	ES2023-85-2
	ES2023-110-4
	Introduction
	Methodology
	LVQ for Multi-Channel Intensities
	Parametrized Angle Dissimilarity

	Experiments
	Results and Discussion
	Conclusion and Future Work

	ES2023-97-4
	ES2023-46-2
	Introduction & Related Work
	Preliminaries: LION
	Automatic trade-off search with LION (AutoLION)
	Experiments
	Discussion & Conclusion

	ES2023-15-3
	Introduction
	ES and Biased Mutation
	Incorporating Evolution Path Bias in Gaussian Mutation
	Evolution Path
	Biased Gaussian Mutation with Evolution Path

	Experiments
	Conclusions
	Benchmark Functions

	ES2023-181-3
	ES2023-100-2
	ES2023-117-4
	ES2023-122-4
	ES2023-92-3
	ES2023-31-2
	ES2023-141-4
	ES2023-25-2
	ES2023-123-3
	Introduction
	Weightless Neural Networks
	Efficient Aggregation Methods for WiSARD models
	Bloom Filters as Space-Efficient Data Structures

	Experimental Setup
	Experimental Results
	Conclusions

	ES2023-95-2
	ES2023-177-2
	ES2023-76-2
	ES2023-79-2
	ES2023-156-2
	ES2023-75-2
	ES2023-121-4
	ES2023-137-4
	ES2023-171-2
	Introduction
	Related Work
	The Autoregressive Transformer
	Experiments
	Conclusion

	ES2023-116-2
	ES2023-72-2
	ES2023-101-8
	ES2023-143-4
	ES2023-17-2
	ES2023-65-5
	Introduction
	Prototypes Learning
	Learning Embeddings via Contrastive Learning
	Experiments and Results
	Conclusions

	ES2023-88-2
	ES2023-180-2
	ES2023-14-3
	Introduction
	Graph for Transformer Feature
	Patches Embedding
	Transformer Encoder
	Graph Correlation Layer
	Graph Neural Network Module
	General architecture

	Experiment
	Implementation details
	Result

	Conclusion

	ES2023-144-2
	ES2023-167-2
	Blank Page

	Friday
	ES2023-64-2
	ES2023-41-5
	Introduction
	Continual Explanation
	Experiments
	Conclusion

	ES2023-112-5
	ES2023-48-3
	ES2023-57-7
	ES2023-86-2
	ES2023-87-6
	Introduction
	Compressed Federated Ridge Regression
	Experimental Assessment
	Conclusions

	ES2023-129-2
	ES2023-133-2
	ES2023-173-2
	ES2023-84-5
	Introduction
	Related Work
	Method
	Experimental Results
	Conclusion

	ES2023-7-2
	Introduction
	Sign Language Data
	Data Sources
	Dataset Annotations

	Sign Language Technology
	Input Signal
	Isolated SLR
	Continuous SLR
	Sign Language Translation

	Overview of the Papers
	Conclusion

	ES2023-128-2
	Introduction
	Emotion modelling
	Results
	Discussion and conclusions

	ES2023-83-3
	ES2023-138-2
	Introduction
	Related Work
	Experimental Setup
	Experiments and Results
	Intrinsic dimension experiment
	Phonological distance experiment

	Conclusion and Outlook

	ES2023-185-2
	ES2023-168-2
	Introduction
	Related Work
	Method
	Dataset
	Experiments

	Results
	Conclusion
	Acknowledgement

	ES2023-1-1
	ES2023-169-6
	ES2023-142-3
	ES2023-174-3
	ES2023-179-5
	ES2023-178-4
	ES2023-159-2
	ES2023-120-2
	Introduction
	Methods
	Synfire Chain
	Ring Attractor with a Spiking Neural Network
	Simulations
	Robustness protocols

	Results
	Robustness
	Reproducing HVC spiking dynamics

	Discussion

	ES2023-139-2
	Introduction
	Methods
	Network architectures
	Synthetic corruption
	Notations

	Experiments and Discussion
	Visualisation of activation tensors
	Quantification of the discrepancy

	Conclusions and Perspectives

	ES2023-94-3
	Introduction
	The Regression Problem
	Neural Gas and its application in regression
	Extending NGTSP to a supervised scenario
	Relations between Learning Vector Quantization, supervised RBFN and RegNG

	Experiments
	Summary and Outlook

	ES2023-44-2
	ES2023-52-3
	ES2023-81-2
	Introduction
	Fairness in Recommendation
	Problem Formulation and Bayesian Personalized Ranking
	FairBayRank Recommendation Method
	Experimentations
	Conclusion and Perspectives

	ES2023-40-4

	2023back
	Blank Page
	Blank Page
	Blank Page
	Blank Page

