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Abstract. Quantum Computing Research proposed strategies to solve
binary optimization problems. Application on current and near-term gen-
eration Hardware is possible. Even if computational benefits of the strate-
gies are yet to be shown, we want to explore connections to prototype
learning schemes. We examine cost functions for vector quantization based
on data point selection and how they can be transformed into a common
quadratic unconstrained binary optimization formulation (QUBO). There
are different approaches for solving QUBO problems using quantum com-
puter or quantum annealer hardware. We look at their current limits and
how they might change.

1 Introduction

Quantum computing enters a phase, where small computers become available
and chances are, that larger devices are possible in the near-term future. This
development has inspired us to get prototype learning ready for different tra-
jectories of quantum research, and their emerging devices based on different
physical phenomena. The research field of quantum computing is broad, rang-
ing from Hardware development to investigations of potential application. To
categorize these different directions, the European competence framework for
quantum technologies [9] was introduced. This work falls in the subdomain
5.5 Quantum Algorithms of this framework. It is a contribution to Quantum
Machine Learning, a growing field of quantum algorithms [18, 14].

We will look at prototype learning and its application on quantum devices.
Prototype Learning or vector quantization (VQ) is based on the simple nearest
neighbor classification (NN) rule, where a data point gets classified by its closest
training data point in the sense of a dissimilarity measure. The simplicity of
the classification rule will be beneficial, when it gets adapted to current and fu-
ture quantum hardware. Storing all training data points for NN classification is
storage intensive, among other drawbacks. Therefore, Nearest Prototype Clas-
sification (NPC) was introduced, it uses the NN rule, but replaces the training
dataset by a set of learned prototypes.
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Inspired by the mathematics of quantum physics, the prototype learning
problem was applied inside the state Hilbert-space of qubits [19]. Going beyond
theoretical influences, if a quantum computer is used inside a classical algorithm
as a coprocessor doing a non-trivial subroutine, that algorithm is denoted as
quantum-hybrid [3]. Quantum-hybrid approaches for vector quantization like
Quantum Hybrid LVQ [6, 16] have been investigated. In the hybrid LVQ [6],
the quantum computer was used to calculate distances space-efficiently and up-
date the position of prototypes in vector-shift based prototype learning schemes,
similar to LVQ 1 [11].

All hybrid approaches are heavily restricted by the current hardware gen-
eration. For some optimization problems, specialized hardware, that utilizes
quantum effects, is built by the company D-Wave. These devices are called
quantum annealers, and they combine a larger number of qubits, while being
much noisier. Quantum annealers still have to prove their potential, that is
claimed [12] by their creators. In [7] we introduced a connection between vector
quantization and optimization problems, along other connections. More pre-
cise, we used a set cover problem for VQ [2], that is compatible with quantum
computing, especially quantum annealing.

In this paper, we look at a second binary optimization problem statements
for vector quantization, based on directly optimizing accuracy [4]. Show the
necessary transformations of the problem definitions to be solvable by quantum
heuristics. And conclude with an overview of solving strategies for different
device categories, what benefits can be expected.

2 Vector Quantization by binary optimization

Given a dataset X with data points xi, where i ∈ 1, . . . , N . The task of (learn-
ing) vector quantization is to find a prototype set W with |W| ≪ |X | that
represents the dataset, in the sense of a nearest neighbor classification rule. Fol-
lowing this rule, a data point is assigned to the class of its closest prototype by
given dissimilarity d. A key parameter in vector quantization is the number of
prototypes in the output. Two mechanisms can decide this number[1]. Either
can it be a hyperparameter and therefore user-defined, or the algorithm solves
an optimization algorithm that contains the number of prototypes as a trainable
parameter.

A special case is defined by requiring W ⊂ X . This can be necessary if
distances are only available for a discrete set of objects. The quantization part
becomes a selection problem. Because of the combinatorial nature of selection,
classically, it can only be approximated.

Quadratic Optimization Problem Given variables ai to optimize, a quadratic
problem has a cost function of the form∑

ij

wijaiaj +
∑
k

wkak.
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If ai ∈ {0, 1} the problem is called binary. Additionally, we allow linear con-
straints that restrict the space of possible solutions, either equalities or inequal-
ities: ∑

k

ykak = z,
∑
k

ykak < z.

An optimization problem with a quadratic cost function, binary variables and
no constraints is called Quadratic Unconstrained Binary Optimization (QUBO)
problem.

Vector Quantization as Set Cover Problem A strategy that optimizes the num-
ber of prototypes is the set cover formulation by [2]. This formulation does not
perfectly align with the NPC paradigm. Still, its locality by the epsilon balls
could be beneficial for larger problems, while giving practical solutions for the
NPC inference. It is an extension of the set cover problem. The possible sets
are epsilon balls around each data point, and they get a weight, based on their
contribution to the classification task, It generates multiple constrained binary
optimization problems, one for each class:

minimize
∑

i:xi∈X
Cc(xi)xi +

∑
j:xj∈Xc

zi

subject to
∑

i:j∈ϵ(xi)

xi ≥ 1− zj ∀xj ∈ Xc.

The variable xi ∈ {0, 1} indicates if xi is in the prototype set and zj ∈ {0, 1} is
0 if xj is uncovered. The classification task is encoded in the costs of adding,
with Xc being all data points with class c:

Cc(x) =
1

|X |
+ |ϵ(x) ∩ (X \ Xc)|.

Vector Quantization selection problem The NPC problem can directly be writ-
ten as an optimization problem called optimal p-Prototype Nearest Neighbor
model (p-PNN) [4], for a number p of prototypes. Given a dissimilarity matrix,
p-PNN generates the following optimization problem:

maximize
∑
i∈I

zi

subject to
∑
s

xs = p∑
s∈Wc

xs ≥ 1 ∀c ∈ C

zi ≤ (1− xt) +
∑

s∈Wc(i)∩Wit

xs ∀i ∈ I, t /∈ Wc(i)
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In this problem zi ∈ {0, 1} indicates, whether point xi is classified correctly.
The variables xs ∈ {0, 1} indicate if xs ∈ W. To generate all constraints, the set
of prototypes candidates, in our case X , is split into subsets. First, Wc contains
all candidates with class c. Further, Wit is the set of candidates preferred by
point xi over xt. A xj is preferred, if d(xi,xj) < d(xi,xt), while in case of ties,
a point that misclassifies xi wins.

3 Optimization Methods

3.1 Classical Reference

To compare the two introduced optimization strategies, we use classical solvers
with the iris dataset, which is small enough to solve. For both approaches, the
constrained problems are generated using the python library PuLP [13].

To compare the strategies, the generated problems can now be solved in their
original form with a classical solver framework, e.g., PuLP has support for dif-
ferent commercial (Gurobi, IBM CPLEX) and open-source solvers (GLPK). The
results are shown in Figure 1. For the p-PNN we observe that this optimization
chooses the class distribution algorithmically, a distribution could be enforced
by changing the constraints. We can also confirm that the epsilon ball radius
is an unintuitive parameter, and has to be optimized as a hyperparameter, like
the authors of the original paper [2] do.

Fig. 1: Comparison of the selection strategy and the set cover strategy for dif-
ferent hyperparameter settings.

3.2 Get Quantum Ready

To solve the combinatorial approaches with quantum devices, they have to be
transformed it first. We start from a binary optimization problem with inequality
and equality constraints and generate a QUBO problem. To achieve this, we first
transform the inequality constraints into equality constraint by adding integer
slack variables, which are then encoded by a set of binary variables. All equality
constraints can then be transformed into penalty terms. Because all constraints
have been linear so far, we are not adding terms of order greater than two,
keeping a quadratic cost function.

Inside the python quantum framework Qiskit [15], there is a package for
optimization, which implements the necessary steps to transform constrained
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integer problems into QUBO. With the transformed problem at hand, there are
different proposed quantum heuristics (see [7], Section 4.7).

As an example, we transform the smaller set-cover-based approach into a
QUBO problem statement. For simplicity, we assume symmetry of the dissimi-
larity, that is xj ∈ ϵ(xi) ⇐⇒ xi ∈ ϵ(xj) The original statement has inequality
constraints of the form: ∑

i:xj∈ϵ(xi)

pci ≥ 1− zj .

The right side of the equation is 0 or 1, while the left side is between 0 and |ϵ(xj)|.
Each of these constraints can be transformed into equalities by introducing a
slack variable 0 ≤ sj ≤ |ϵ(xj)|:∑

i:xj∈ϵ(xi)

pci + sj + zj − 1 = 0.

These slack variables can then be replaced by a weighted sum of binary variables
sj;n as a binary number, but any binary encoding scheme is possible:

sj =

⌈log2(|ϵ(xj)|⌉∑
n=0

sj;n2
n

4 Conclusion

In this work, we presented two vector quantization strategies that can be trans-
formed into optimization problems that can potentially be solved by quantum
devices. Both problems are outgrowing current quantum device limits, even for
small problems. The largest quantum computer by IBM, a leading company in
general purpose quantum computing hardware, has 127 qubits. For quantum
annealers, the main competitor just published a paper with a 5000 qubit device
[10], but usually qubits get lost by mapping a problem onto a specific hardware,
due to low interaction possibilities between the qubits. In addition, the current
implementation of quantum devices adds a lot of time overhead, which obscures
the potential benefits for small problems. The comparison between classical and
quantum solvers would be skewed because classical solvers use some well-tested
heuristics to speed up the solution, while quantum optimization is in its early
days. Whether quantum devices will ever be capable of solving these problems
in application, depends on future hardware developments.

About the capabilities of the devices, there is an ongoing discussion about
the concept of quantum annealers, and if they are really beneficial. Some the-
oretical advances like parity quantum computing [5] could make the problem
transformation into QUBO obsolete by introducing new ways to encode integer
optimization problems onto quantum hardware. Recently, the question has been
raised, whether theoretical quantum advantage is even the right goal for quan-
tum machine learning [17]. Transforming vector quantization into QUBO is not
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only interesting for quantum devices. As a heuristic for neuromorphic hardware,
another emerging paradigm, were presented [8].

If the hardware grows into the size of application problems, the optimiza-
tion approaches would make vector quantization less ambiguous. The resulting
prototypes would only be dependent on the selected dissimilarities, removing
variances introduced by the approximation strategies. Until then, the poten-
tial of quantum solutions makes approaches, which are classical intractable and
therefore less attractive, worth another look.
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