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Abstract. Texture classification plays an important role in different do-
mains including agricultural applications, where unmanned vehicles such
as drones equipped with multispectral sensors are gaining more attention.
Hence, a solution which does not require substantial computational re-
sources is desired for real-time monitoring. In this contribution, we propose
an efficient and interpretable Generalized Matrix Learning Vector Quanti-
zation based framework to classify multispectral images. We demonstrate
the performance of different model designs and compare them to other
benchmarks for the classification of a soil data set. Our framework yields
comparable accuracy while providing interpretable results.

1 Introduction
Texture analysis is a branch of imaging science that aims to identify and quan-
tify spatial patterns of pixels. Its methods are well suited for classification and
segmentation tasks, as they provide unique information about the texture within
the image region [1]. Particularly, texture classification is a topic of interest in
agricultural applications, where remote sensing technologies collect data for crop
monitoring [2, 3, 4]. A variety of methods have been developed for texture anal-
ysis including Gabor filtering [5] and co-occurrence matrices [6]. The state-of-art
approaches such as Convolutional Neural Networks (CNN) have remarkable ac-
curacy [7], however, they typically lack interpretability, demand large amounts of
data for training, and require substantial computational resources. As unmanned
aerial vehicles (UAVs) such as drones equipped with multispectral sensors are
gaining more attention in the agricultural sector due to their flexibility [8], a
more lightweight solution is desired for real-time monitoring.

The majority non-NN based texture classification methods are designed to
operate on single-channel images, e.g. in the case of colour images, the input is
first preprocessed with one of the standard RGB-to-greyscale transforms fixed for
all classes. However, having local transformations can result in higher accuracy,
as shown in [9] with the Colour Image Analysis Learning Vector Quantization
(CIA-LVQ) framework. It bases on prototype learning with adaptive dissimilar-
ities in the form of Generalized Matrix LVQ (GMLVQ) and a Gabor filter bank
as a feature extractor. In [10, 11] CIA-LVQ was extended by an adaptive filter
bank, which improved classification results even further.

In this work, we generalize CIA-LVQ to multispectral data, adjust the orig-
inal adaptive dissimilarity measure and extend CIA-LVQ with a Parametrized
Angle-based (PA) dissimilarity. We also demonstrate a special case of the trans-
formation matrices, specifically designed for multichannel data which reduces
the complexity while improving the generalization ability and explainability of
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the models. Unlike [10, 9] we consider images in the spatial domain to allow
more intuitive interpretation and discard the filtering operation as in contrast
to [11], the focus of this work is the impact of dissimilarity measure and matrix
format. Our results are comparable to benchmarks while being interpretable.

2 Methodology
The CIA-LVQ operates on patches from the original data. Without loss of
generality, we consider all h channels and hence a patch of size p × p has the
dimensionality of n = p2h. The patches are vectorized and channel-wise con-
catenated to form feature vectors. Unlike [9, 10] we consider real input and
no filtering, hence, analyze the use of Angle LVQ [12] for multispectral texture
classification and propose a block-diagonal parameterization for channels.

2.1 LVQ for Multi-Channel Intensities

Learning Vector Quantization (LVQ) [13] is a supervised algorithm using the
winner-takes-all scheme, in which a data point is classified according to the
label of its closest prototype. Throughout the following, we assume a labelled
training data set {(xi, yi) | xi ∈ Rn, and yi ∈ {1, . . . , C}}Ni=1 and a set of
prototype vectors wj ∈ Rn with labels c(wj) ∈ {1, . . . , C}. In contrast to
the original heuristic prototype update the Generalized LVQ [14] introduced a
training scheme as minimization of cost function:

E =
N∑
i=1

Φ(µi), µi =
dJi − dKi
dJi + dKi

, (1)

with distance dJi = d(xi,w
J) to the closest prototype wJwith the same class

label yi = c(wJ) and the distance dKi = d(xi,w
K) to the closest prototype with

non-matching label yi ̸= c(wK). Φ is a monotonic function and we use the
identity function in this contribution. The definition of d plays a central role in
LVQ-based classifiers, as it determines the closest prototypes. In this paper, the
quadratic form and angle-based dissimilarities are considered. These pseudo-
metrics are not guaranteed to satisfy the triangle inequality, but we address
them as “distances”/“dissimilarities” throughout this paper for readability.

GMLVQ [15] makes the distance adaptive by employing a positive semi-
definite n × n matrix Λ, accounting for the pair-wise correlation between the
features. To ensure positive semi-definiteness Λ can be decomposed as Λ = ΩTΩ
with Ω ∈ Rm×n, m ≤ n. The corresponding quadratic form (QF) is defined as:

dΩQF (x,w) = (x−w)TΩTΩ(x−w) , (2)

where Ω is learned along with the prototypes. Rectangular matrices Ω with m <
n imply dimensionality reduction by a linear transformation. In this paper, we
adopt rectangular Ω’s with m = n/h to obtain a “quasi-greyscale” representation
of the original multispectral patch and have a possibility to interpret Λ as the
correlation matrix of spatio-spectral features. In addition to a full matrix we
introduce the new option developed for channel intensity images (both shown in
Figure 1). We term it a block-diagonal matrix:

Ω̂ij =

{
Ω̂ij , if j = i+ (l − 1)m with l = 1, . . . , h

0, otherwise .
(3)
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Fig. 1: xi is projected with a full ΩT (a) or block-diagonal Ω̂T (b) transformation
matrix resulting in a lower-dimensional representation ξi. Shading indicates
contributions to the shaded element of ξi and empty cells indicate zero weights.

Hence, every row Ω̂i contains only contributions of the same pixel from each
of h channels reducing the number of free matrix parameters from nm to hm,
which can prevent the risk of overfitting. Instead of a global transformation local
matrices ΩL or Ω̂L attached to each prototype or class can be trained, changing
the piece-wise linear decision boundaries into nonlinear ones.

2.2 Parametrized Angle Dissimilarity

A very recent extension of GMLVQ named Angle LVQ (ALVQ) [12] introduced
a parameterized angle (PA) distance, that demonstrated very robust behaviour
for heterogeneous data and imbalanced classes. The dissimilarity is defined as:

dPA(x,w) = g(bΩ(x,w), β), where g(bΩ, β) =
e−β(b−1) − 1

e2β − 1
, (4)

and bΩ(x,w) =
xTΩTΩw

∥x∥Ω∥w∥Ω
, with ∥v∥Ω =

√
vTΩTΩv . (5)

The g function in (4) transforms the parameterized cosine similarity bΩ = cos θ ∈
[−1, 1] into a dissimilarity ∈ [0, 1]. The hyperparameter β controls the slope
weighting the contribution of samples within the receptive field based on their
distance to the prototype. The angle-based distance classifies on the hyper-
sphere instead of Euclidean space and hence does not consider the magnitude of
vectors. Optimization of the prototypes and Ωs occurs through minimization of
the non-convex cost function in eq. (1) by gradient methods, such as stochastic
gradient descent or conjugate gradient. The corresponding partial derivatives
for QF- and PA-based GMLVQ can be found in [15] and [12], respectively. Nor-
malization of Ωs [15] and regularization [16] of E has been also proposed.

3 Experiments

To demonstrate the application of our framework to multispectral data, we use
Statlog data set [17] of agricultural land. Each entry xi is a 3 × 3 pixel neigh-
bourhood containing information from h = 4 spectral bands: two of these are
in the visible region (correspond approximately to green and red spectrum) and
two are in the (near) infrared, yielding the dimensionality n = 32 · 4 = 36. The
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Fig. 2: Visualisation of first two (visible) bands for patches from different classes.

provided labels yi are associated with the central pixel and belong to one of the
6 unbalanced soil classes, namely red (24.2%), cotton (10.8%), grey (21.7%),
damp grey (9.4%), vegetation stubble (10.6%), and very damp grey (23.4%),
which are shown in Figure 2. To correct for class imbalance, we apply weighting
to the samples’ contribution to the cost function as explained in [18]. 6435 data
points were divided into training (4435) and test (2000) set by the author.

We experiment with 4 main types of models which differ in the distance
measure d, and the transformation matrix Ω configuration. In all cases, we use
local Ωjs with m = n/h = 9 so that the matrices project the original data into an
‘intensity’ image. The hyperparameters such as the number of prototypes per
class k, β, regularization strength and presence of normalization are estimated
with the grid search with 5-fold cross-validation on the training data. The best-
performing model of each type is then evaluated on a test set.

4 Results and Discussion
The results of the experiments can be found in Table 1. Higher accuracy can
be achieved with a larger number of prototypes and prototype-wise Ωjs, but
we restrict them to be class-wise, i.e. Ωj (j = c(wL)), and limit maximum
prototypes’ number to 3, reducing model complexity. According to our results,
the best-performing model was trained with QF dissimilarity, full matrix, and 3
prototypes per class. Its counterpart with block-diagonal Ω̂j shows rather simi-
lar results despite having lower complexity in terms of the number of trainable
parameters. The PA-based models provide lower accuracy, struggling to differ-
entiate between grey, damp grey and very damp grey soil types. These classes
are the most problematic for all models, as can be seen, in Figure 3. It is likely
due to their similarity as the names suggest and damp soil being the minority
class. Therefore, further experimentation with weighing costs associated with
data belonging to these classes is needed. We also compare our results to other
publicly available benchmarks on Statlog. In [19], the authors report a test
accuracy of 82.57% obtained with a NN. The results of the multilayer percep-
tron backpropagation neural network (MLP) (89.3%), support vector machine
(SVM) (85.1%), and k-nearest neighbour (k-NN) (89.0%) are shown in [20]. Our
best model achieves either higher or comparable accuracy while offering insights
into the data. Specifically, correlation matrices after QF-based training which
are shown in Figure 4 provide information on spatio-spectral feature relations
specific to each class. For instance, a strong positive correlation can be observed
within the visible red band and a negative correlation between the red and fourth
infra-red bands of the grey soil class. While for very damp grey soil, the strongest
positive correlation is found within the visible green channel. Moreover, since
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Table 1: Accuracy and (std) in %. Last column contains hyperparameters and whether
regularization and matrix normalization was used. Best result marked bold.

d Ω Val. Train Test
QF Full 88.86 (0.96) 89.81 88.20 k = 3, reg
QF Block 87.84 (0.79) 88.28 87.70 k = 2, norm
PA Full 81.40 (0.66) 86.52 81.40 k = 2, β = 2
PA Block 80.25 (1.37) 83.47 79.90 k = 3, β = 1

Fig. 3: Confusion matrices showing class-wise accuracy for models with full ΩLs.

transforming learned prototypes with corresponding Ωj yields a single-channel
output which can be visualized as an intensity image, the original multispectral
input can have a more insightful depiction than if a fixed transform was used.
The number of free parameters is C(nm+kn) for full Ωj or C(n+kn) for block-

diagonal Ω̂j with C number of classes. For our best models, it totals to 2592 and
648, respectively. We estimate that the NN of [19] with two 65-neuron hidden
layers has 6955 trainable parameters and 36-45-6 MLP of [20] has 1890. Hence,
our framework, especially if block-diagonal matrices are used, is efficient to train
and less likely to overfit. Moreover, the classification speed is linear with the
total number of prototypes, which is much smaller than that of the reference set
of k-NN or the number of support vectors in SVM. Finally, the LVQ model is
transparent and allows further interpretation than presented in this work (see
e.g. [18] for an alternative to classification activation maps).

Fig. 4: Λj after training with diagonal elements set to 0. The quadrants show
within- (on diagonal) and between-band (off-diagonal) correlation.

5 Conclusion and Future Work
In this work, we proposed an efficient and interpretable block-diagonal dissim-
ilarity extension for the Generalized Matrix LVQ framework and demonstrated
its application to agricultural multispectral images. We experimented with two
adaptive distance measures that operate in Euclidean space or on a hyper-sphere,
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and two matrix configurations. We conclude that for the Statlog data set classifi-
cation in Euclidean space using the quadratic form provides the highest accuracy,
while full and block-diagonal configurations of GMLVQ matrices give very simi-
lar results. Our models perform comparably with previously reported accuracy
from NNs, SVM, and k-NN, while being interpretable, less complex and provid-
ing a way to visualize multispectral data. In future work, we will incorporate the
learned texture similarities in morphological filter segmentation for images with
intensity values in multiple channels, such as colour and hyperspectral images.
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