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Abstract. We developed a new uncertainty quantification method for
deep learning regression models, based on Layer Ensembles [1], which
is competitive with state-of-the-art ensembling and Monte Carlo (MC)
dropout techniques. The method was implemented in a UNet-like archi-
tecture and applied to predicting 3D dose maps for head and neck cancer
patients who are treated with proton therapy. The new approach runs
approximately 8 times faster than MC Dropout. Our statistical analy-
sis showed no significant difference in prediction accuracy between the
two different methods (p-value = 0.09). Moreover, the correlation un-
certainty/error in the body is only -3%. These findings demonstrate the
potential of the new method in enabling fast and accurate uncertainty
quantification for regression problems and, in particular, for proton ther-
apy dose prediction.

1 Introduction

U-Net architectures have showcased promising results for predicting 3D dose
distributions in radiotherapy treatments [2]. However, quantifying prediction
uncertainty remains a crucial aspect yet to be further explored to achieve safe
and effective treatment planning.

MC Dropout [3] and Deep Ensembling [4] are two widely used methods to
estimate a model’s prediction uncertainty, without being too computationally
intensive as Bayesian Neural Networks (BNNs) [5]. The former involves ap-
plying dropout at test time and making multiple (different) predictions for the
same input, which results in an approximation of BNNs. The variance of the
predictions - computed voxelwise - is considered as a proxy of the uncertainty of
the model and gives a 3D uncertainty map. Deep Ensembling works in a similar
manner, by training multiple versions of the same model with different subsets of
data, and then computing their prediction variance as the uncertainty. Despite
their popularity, MC Dropout and Ensembling have a big drawback: the need of
performing several-passes at inference time to later compute the variance. This
is time consuming and hampers the implementation of these methods for clinical
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situations with tight schedules, like adaptive protontherapy, where the patient
is waiting in the treatment room.

In this work, we describe a new and fast method of quantifying the uncer-
tainty of regression problems with a single inference pass, using a 3D U-Net. We
developed a new method based on Layer Ensembles [1], introduced by Kushibar
et al., to generate a 3D voxelwise uncertainty map for predicted proton therapy
dose distributions in head and neck cancer patients. Regarding training time,
the new method is significantly faster than Deep Ensembling as it involves only
a single model. Regarding inference time, the 3D uncertainty map is directly
computed in single pass, which makes it competitive against MC Dropout. Our
approach is compared with these two commonly used methods.

2 Material and methods

Patient dataset. We used a data set of 60 patients with head and neck cancer to
train 11 versions of a dose prediction model. Each patient anatomy is described
by a CT scan as well as multiple masks indicating the location of organs at risk
(OARs) and prescribed doses on clinical target volumes (CTV). The dataset was
randomly divided into 11 groups of 47 training, 5 validation, and 5 test patients,
with each test set exclusive to its corresponding model. Moreover, 3 patients
were kept out of each set to assess the consistency of predictions across all 11
models.

Architecture of the prediction model. The prediction model used consists in a
3D U-Net with both long and short residual skip-connections. The model takes
as input 16 channels which describe the anatomy of the patient and outputs
a single-channel dose prediction. We evaluated variations of this architecture.
Specifically, we assessed the effectiveness of incorporating attention gates in the
decoder [6], as well as Project-and-Excite (PE) modules [7] after each convolution
block. We trained all models for 200 epochs, with a dropout rate of 0.3, using a
learning rate of 10−4.

Layer Ensembles. Our implementation of Layer Ensembles is based on the ar-
chitecture detailed in [1]: a head is attached after every decoder block in the
3D U-Net, described in the previous paragraph with the input of a head being
the output of the corresponding decoder block (Figure 1). Each head consists
of a 3D convolution module followed by an upsampling operation and a ReLU
activation function. The output of each head has the same shape as the final
dose prediction and can be consider as an approximation of it. The uncertainty
is obtained by computing the variance of the outputs from the different heads as
well as the final output of the model. The intuition behind this approach is as
follows: hard to predict samples must have been through more decoder blocks
in order for a head to predict an accurate dose [1]. As a result, the outputs
of the heads will vary significantly from block to block, leading to increased
uncertainty.
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Prediction error. The quality of a radiotherapy dose is typically assessed with
dose-volume metrics, as the mean (Dmean) and Dk (e.g., D2, D95, or D99) for
specific organs at risk (OAR) and target volumes (CTV), where Dk is dose
received by the x % of the OAR/CTV volume. Thus, we evaluate the quality of
a predicted dose by computing the compound absolute error in clinically relevant
dose-volume metrics for the considered OARs and CTVs:

Ecompound =

OARs,CTV s∑
j=0

|Ej,k|

being Ej,k the error in Dk metric for a given, j, OAR or CTV (e.g. ECTV,95 =

DCTV,95 − D̂CTV,95, where DCTV,95 and D̂CTV,95 are the metric values for the
ground truth and predicted doses, respectively. Note that for MC Dropout and
Deep Ensembling, the prediction is the average of the different models, while for
LayerEnsembles there is only a single predicted dose.

Prediction uncertainty. Let Umap, the 3D dose uncertainty map obtained by
taking the voxelwise standard deviation of the different dose predictions in the
body. Let Emap, the error map representing the voxelwise MAE between the
predicted dose and the actual dose in the body. The quality of Umap is deter-
mined by the correlation ρmap between Umap and Emap, which should be as close
as possible to 1.

Fig. 1: Layer Ensembles process

3 Results and discussion

For each uncertainty estimation method described in Section 2 we shall evaluate
the quality of the uncertainty quantification, the accuracy of the predictions and
the inference time. The objective is to achieve swift and accurate predictions
across all test patients, while simultaneously maximizing the correlation between
error and uncertainty.

3.1 Layer Ensembles:

We trained the Layer Ensembles model using a different loss function from the
one used to train a standalone U-Net. We differentiate between two distinct
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Fig. 2: Slice of 3D dose prediction and uncertainty map obtained with the best
Layer Ensembling model

losses: lossbase, which computes the average loss of the predictions from each
individual head and the final prediction, and lossmodified which gives more weight
(50% of the total loss) to the final model prediction. The usage of the two losses
are analyzed for each version of Layer Ensembles trained. The heads and the
model are jointly trained for 200 epochs, then the heads alone are fine-tuned for
200 more epochs.

We analyzed multiple U-Net architectures trained with 3 or 4 heads attached
to 3 or 4 decoder blocks1: a base version of the 3D U-Net, as described in Section
2, another version with PE modules added after each convolution block of the
U-Net, and a 3D Attention U-Net with PE modules.

The model with the lowest mean Ecompound, 20.77 Gy (± 19.78), uses the ar-
chitecture with 3 heads, PE and attention modules, and is trained with lossmodified.
The baseline Layer Ensembles model with 3 heads, trained with lossmodified, has
an average error of 21.87 Gy (± 16.62).

3.2 Comparison with Ensembling and MC Dropout

We compared the results obtained with Layer Ensembles to the performance of
Deep Ensembling and MC Dropout. For MC Dropout, we predicted 20 different
doses for each patient. We tried different test dropout rates between 0.1 and 0.5
for MC Dropout. A rate of 0.3 gave a good tradeoff between the quality of the
uncertainty quantification and the final prediction accuracy. For Deep Ensem-
bling, we trained 10 different 3D U-Net with PE blocks to predict 10 different
doses for each test patient. Previous literature supports the use of a smaller
number of ensembling models, where they found that 5 ensembling models gave
similar results that scaling up to 50 models [8].

Figure 3 compares the average Ecompound for the different uncertainty quan-
tification methods. We conducted 5 Wilcoxon tests, with Benjamini-Hochberg
correction [9], to compare Deep Ensembling and MC Dropout (rate = 0.3) with

1We also tried other versions of Layer Ensembles with heads attached to the encoder or the
bottleneck, but observed a poor uncertainty estimation.
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Fig. 3: Predictions compound errors for different methods
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Fig. 4: Correlation uncertainty/MAE in body for different methods

the Layer Ensembles model that has the lowest average Ecompound (in green
on Figure 3), as well as with the baseline Layer Ensembles (in yellow). The 5
tests gave the following results: Deep Ensembling performs significantly better
than MC Dropout in CTVs and OARs (p = 0.048). The best Layer Ensembles
model exhibits no significant error difference compared to MC Dropout (p-value
= 0.09), but underperforms compared to Deep Ensembling (p-value = 0.0014).
Finally, the baseline Layer Ensembles model is significantly less accurate than
MC Dropout (p-value < 10−4) and Deep Ensembling (p-value < 10−6).

Figure 4 reports the values of ρmap the correlation between Umap and Emap.
Deep Ensembling does not perform significantly better than the Layer Ensembles
model with attention modules depicted on the graph (p = 0.9). The average
ρmap are 0.6 for both methods. Nonetheless, with a 0.62 for ρmap, MC Dropout
outperforms Layer Ensembles (p = 0.03) and Deep Ensembling (p = 0.002).

149

ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9. 
Available from http://www.i6doc.com/en/.



We used an A100-PCIE-40GB GPU to measure the time required to predict
dose and quantify uncertainty for 55 test patients. Our experiments revealed a
significant difference in inference time between the three methods, with Layer
Ensembles being the fastest (00:17:26), followed by Deep Ensembling (01:08:56)
and MC Dropout being the slowest (02:25:50). Notice that Deep Ensembling
inference time is shorter than for MC Dropout, but the method requires multiple
models to be trained at first.

4 Conclusion and perspectives

We used a new uncertainty quantification method based on Layer Ensembles
[1] to quantify uncertainty of proton therapy dose predictions. Because it only
requires a single pass of the data and a unique model, our approach has the
advantage of being significantly faster than state-of-the-art methods used in
practical applications to predict an accurate dose and its uncertainty. Our model
can provide a 3D map of the uncertainty, which might help make decisions and
interpret the prediction of the algorithm, as well as its reliability. The new
method can also be used to perform out-of-distribution detection, e.g., regions
with large uncertainty might indicate the presence of noise or an anomaly in the
input CT scan of the patient. Finally, Layer Ensembles could be used for Active
Learning tasks for unannotated new samples of proton therapy dose.
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