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Abstract. Meta-learning is a line of research that develops the ability
to leverage past experiences to efficiently solve new learning problems. In
the context of Reinforcement Learning (RL), meta-RL methods demon-
strate a capability to learn behaviors that efficiently acquire and exploit
information on a set of related tasks.

The Alchemy benchmark has been proposed in [1] to test such methods.
Alchemy features a rich structured latent space that is challenging for
state-of-the-art model-free RL methods. These methods fail to learn to
properly explore then exploit.

We develop a model-based algorithm. We train a model whose principal
block is a Transformer Decoder to fit the symbolic Alchemy environment
dynamics. Then we define an online planner with the learned model using
a tree search method. This algorithm significantly outperforms previously
applied methods on the symbolic Alchemy problem.

Our results reveal the relevance of model-based approaches with online
planning to perform exploration and exploitation successfully in meta-RL.

1 Introduction

Deep Learning methods have been successfully applied to various problems such
as in image processing, natural language processing, and games. However, these
solutions usually require many samples to solve any new task. The develop-
ing field of meta-learning addresses this issue. To solve a task of interest, the
meta-learning paradigm supposes access to data from other tasks in relation
to the task of interest. A meta-learning method can then take advantage of
this supplementary data to learn an efficient learning algorithm for the task of
interest.

Recently proposed in [1], the Alchemy benchmark aims to test and under-
stand proposed meta-RL algorithms. In this benchmark, the agent faces an
environment with a new hidden dynamics in each episode. To maximize his re-
wards, the agent must understand this dynamics through experimentation, then
exploit that knowledge over the episode. Two versions of the benchmark have
been proposed, a 3D visual version and a symbolic version. We focus on the
symbolic version in this paper.
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One approach to meta-RL is to cast the problem as a partially observable
Markov Decision Process (POMDP), where a latent space represents the hidden
dynamics. Model-free RL methods that support partial observability can then
be used for meta-RL [2, 3]. The authors of Alchemy tested state-of-the-art
model-free RL methods on it. Their experimentation revealed a failure of these
model-free RL methods to learn a policy that efficiently explores for information
and then exploits it both on the 3D visual and on the symbolic case [1].

We investigate the use of a model-based algorithm with online planning on
the symbolic version of Alchemy and show significant improvements. This result
shows both:

• the capability of Deep Learning methods, in particular the Transformer
architecture, to fit complex dynamics in environments where model-free
RL methods fail. These dynamics emerge naturally in meta-RL problems
where the latent space is a critical part;

• the strength of online planning algorithms in challenging environments,
such as those that arise in meta-RL where the reward is delayed between
the gain in information from exploration and its exploitation.

2 Methods

We define the general problem we address in 2.1, and describe the symbolic
Alchemy benchmark in 2.2. We present the training process and architecture
of the neural network model fitting the dynamics in 2.3. We then explain the
online planner we use on top of this model in 2.4.

2.1 Problem formulation

We define a partially observable Markov decision process (POMDP) as a tu-
ple (S,A, T, P,Ω, O,N) where S is the set of states, A is the set of actions,
T is the conditional transition probability distribution over states and rewards
T (st+1, rt+1|st, at) where st+1, st ∈ S, at ∈ A and rt+1 ∈ R, and P is the
probability distribution over the initial states. The set Ω defines the possible
observations and O is a conditional probability distribution O(ot|st, at) describ-
ing the link between the state and action pairs with the observations given to
the agent. The number N gives the number of steps in one episode.

In our meta-learning problem, at the start of each episode, latent variables
are sampled. These hidden variables define the dynamics until the end of the
episode. This fits in the definition of a POMDP. Our goal is to define an agent
that maximizes its expected sum of rewards in a POMDP, allowing us to apply
it to the meta-learning problem.

2.2 Symbolic Alchemy

Symbolic Alchemy as defined in [1] links an unknown “chemistry” to the dynam-
ics of an environment which consists of a variety of stones and potions. Where
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Episode

...

Sample chemistry

Trial 1 Trial 2

Sample stones and potions Sample stones and potions

Fig. 1: Decomposition of one episode of symbolic Alchemy: a chemistry is sam-
pled for the episode, then trials are interleaved with resamples of new potions
and stones.

potions can be used to change stones, and render them more valuable. Here,
the chemistry determines the effect of applying a potion on a stone and a new
chemistry is sampled each time an episode starts. For example, applying the red
potion on a small purple stone might make it large in one episode and increase
its value, but might change its color in another and decrease its value.

In symbolic Alchemy, there are three types of objects that determine a state:
the chemistry; the stones, their respective 3 visual features and associated re-
ward; and the potions with their respective colors. The features of the stones
and potions are directly observable, but the chemistry is not.

The agent can do several actions. He can apply a potion on a stone, this
can change its perceptual features and reward. He can also collect the reward
associated with a stone (which can only be done one time for each stone). The
hidden chemistry determines the effects of potions on stones and the possible
features of stones.

An episode unrolls as follows: a chemistry is sampled among 167,424 others
at the start and is kept constant during the whole episode; then a sequence of 10
trials follows. Each trial is further decomposed in: sampling a set of stones and
potions; then 20 time steps where actions can be taken to understand the chem-
istry through experiments, generating high-value stones by using potions, and
collecting rewards associated to the stones. The decomposition of one episode is
given on Figure 1.

2.3 Learning a model

2.3.1 Data

We sample a dataset of trajectories prior to any learning and planning. We
simply use a uniform policy over the action space to generate the trajectories.
We define a supervised learning problem from this data to learn a model of the
dynamics.

While this method is sufficient to learn an accurate model in the case of
symbolic Alchemy, other environments might need interleaving data generation
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and model learning to get sufficient coverage of the state and action spaces.

2.3.2 Model architecture

The architecture is presented in Figure 2. Our model is based on a Transformer
Decoder using causal attention for its main block (3 layers with 256 units each).
It receives as input a sequence of observations, rewards, and actions. From the
sequence, it outputs a prediction for the next observation and reward at each
time step.

In the prediction head for the next observation, a Recurrent Neural Network
(RNN) allows our neural network to model non-independent probability distri-
butions over the dimensions of the next observation. In addition to the RNN, a
direct linear layer is used to improve the optimization process.

 

Transformer Encoder

Dropout

Multi-head
Attention

Layer Norm

Layer Norm

MLP

LinearLinear Linear

GRU Linear

MLP MLP

Fig. 2: A neural network architecture to fit trajectories. At the bottom, the
sequence of observations and rewards is first transformed into categorical vari-
ables. Then the sequence is passed into a Transformer block with positional
encoding and causal attention. Independent heads predict the next observation
and reward in the sequence from the output of the Transformer.

2.4 Tree search with stochastic transitions

We define the model-based online planning algorithm we use at each step to de-
cide the action to take. Note that this planning algorithm uses for its simulations
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the learned model defined in the previous section.
We construct our online planner on top of the tree search planner presented

in [4]. The tree search algorithm grows iteratively a tree where each branch rep-
resents a potential sequence of actions starting at the current state. The search
procedure balances exploration and exploitation of promising branches by learn-
ing Q-values at each node. The original algorithm supposes full observability
and deterministic transitions. We adapt it to support partial observability and
stochastic transitions.

To deal with partial observability, we use a common transformation that
casts POMDPs as equivalent MDPs where states correspond to the complete
history of observations up to that point. Note that even if the original POMDP
was deterministic, the resulting MDP is stochastic in general.

To support stochastic dynamics, we adapt the tree search algorithm by
adding chance nodes as children of decision nodes. At chance nodes, we branch
different paths representing different stochastic realizations of the system dy-
namics. For each chance node, we use a fixed number of samples from which
stochastic branches are created.

3 Results and discussion

We compare our method against the results obtained in [1]. They tested V-MPO,
a state-of-the-art model-free RL method, applied with a Transformer architec-
ture improved for model-free RL [5]. They also implemented an ideal observer,
which is a Bayes-optimal agent that has the best performance achievable on the
benchmark. This agent is not directly comparable to the others, since its imple-
mentation relies on prior knowledge of the problem. For further insights into the
agent performances, they also implemented Random Heuristic which is a simple
baseline.

Table 1: Comparison with the V-MPO RL method and the baselines given in
[1]. We give the scores with the standard error (250 runs). The number of
expansions refers to the number of nodes explored in the tree search procedure.

Agent Score on symbolic Alchemy

Ours (# expansions 100) 79.3± 1.6
Ours (# expansions 500) 161.8± 3.9
Ours (# expansions 1.250) 207.1± 3.5
Ours (# expansions 2.500) 220.5± 3.2
Ours (# expansions 5.000) 229.5± 3.9
Ours (# expansions 10.000) 251.5± 4.5
V-MPO 155.4± 1.6
Ideal Observer 284.4± 1.6
Random Heuristic 145.7± 1.5
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We sample 106 episodes to construct our dataset of trajectories from which
we learn our model. In contrast, the V-MPO agent is trained using 109 episodes.

See Table 1 for the comparison, we test our method with different magnitudes
of computational resources going into online planning.

The comparison reveals that our method surpasses the model-free RL method
V-MPO with several orders of magnitude less data, given sufficient computa-
tional resources for online planning. It also shows the importance of planning
on this benchmark, since the performance increases significantly with more al-
location of resources into planning. However, the marginal gains diminish too
fast to reach the optimal performance in our tests.

We also tested variations of the architecture of our model of the dynamics:
replacing the Transformer block with an RNN; removing the RNN in the head
to predict observations; ablating the direct linear layer in the head to predict
the next observation. Each of these changes independently resulted in a failure
to correctly fit the dynamics.

Our results demonstrate that a model-based approach with online plan-
ning can substantially surpass the performance of a state-of-the-art model-free
method on the symbolic Alchemy meta-RL benchmark. Our work shows that
while most of the research effort has focused on model-free methods in meta-RL
[6], learning to learn might need explicit modeling of the dynamics and plan-
ning. Moreover, the use of the Transformer architecture can be critical to model
the complex relationship between histories of observations and beliefs upon the
system transitions.
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