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Abstract. This paper introduces a Channel-wise Goodness Function
(CWG) that enhances the Forward-Forward through the use of Convo-
lutional Neural Networks. The CWG function facilitates simultaneous
feature extraction and separation, eliminating the requirement for con-
structing negative data and leading to faster convergence rates. The ap-
proach employs a two-component loss function that maximizes positive
goodness and minimizes negative goodness. This enables the model to
learn class-specific features to outperform recent non-backpropagation ap-
proaches on basic image classification datasets and shorten the gap with
the well-established backpropagation methods.

1 Introduction

Optimizing neural networks is challenging due to the highly non-convex land-
scape. Despite its effectiveness, backpropagation faces limitations due to prob-
lems with local minima, vanishing/exploding gradients, overfitting, and slower
convergence, while requiring large amounts of labeled data [1]. Additionally, its
biological plausibility is doubtful since there is no evidence that the visual system
propagates error derivatives or stores neural activities for a backward pass [2],
[3]. Predictive Coding and Evolutionary Algorithms are non-backpropagation
training schemes that can overcome some limitations in neural network training.
Predictive Coding is based on the idea of the brain’s predictive coding model,
while Evolutionary Algorithms treat network weights as the genome to opti-
mize them. These methods handle the vanishing/exploding gradients problem
without perfect knowledge of the forward pass computation [4], [5]. Reinforce-
ment Learning can handle black-box models, but suffers from high variance and
is computationally expensive [6], [7]. Competitive Hebbian Learning involves
neurons competing with each other to become more active and suppress their
neighbors resulting in the selection of neurons that respond best to the input.
This technique can overcome limitations of task-specific features and overfitting,
but it has slow convergence and requires careful parameter tuning, [3], [8]. The
Forward-Forward (FF) Algorithm [2], has been recently proposed as a promising
alternative to backpropagation. This paper improves the FF-Algorithm to make
it more suitable for Convolutional Neural Networks.
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2 Advancing the Forward-Forward (FF) Algorithm

The FF Algorithm uses two forward passes, one with positive (real) data and the
other with negative (fake) data. The basic positive-negative process represents
“positive” data as a vector of correct labels and images, while “negative” data
are created by combining incorrect labels with input images. The training is
layer-wise through Gradient-Descend on a single layer that has its own objective
function, which is to maximize the goodness of the model on positive data while
minimizing it on negative data. In this context, goodness has been defined as
the sum of squared activations in a layer for specific data. Compared to back-
propagation (BP), FF learning offers a computationally efficient training process
with low memory consumption, the ability to work with unknown forward com-
putation details, and the capacity to learn while pipelining sequential data. The
layer-wise training framework allows modularization, mitigation of overfitting on
a layer level, independent training of each layer for a specific number of epochs,
and a more transparent selection of hyperparameters and model architecture.

The goodness function and method for constructing negative data proposed
initially in [2] are preliminary methods and require further investigation. The
selection of the goodness function determines what the model is trying to opti-
mize and is critical for performance. Furthermore, constructing negative data to
appropriately represent the distribution of naturally occurring negative data to
train and learn multi-layer representations is crucial and extremely challenging
in the positive/negative framework. The task and data dependency of this ap-
proach limits its generalizability; thus, eliminating the requirement for negative
data would be a significant advantage.

Despite its promise, FF is slower than backpropagation learning and also
does not generalize in some simple problems, making backpropagation preferable
for large models trained on large datasets. Our investigation aims to improve
accuracy while also exploring the potential for faster convergence rates with the
FF algorithm. Optimizing each layer directly through layer-wise training should
lead to quicker convergence, as in BP the backpropagated error derivatives tune
indirectly the early neural network layers.

Our approach simultaneously extracts and separates features using convo-
lutional layers, trained with the FF Algorithm for faster convergence. Unlike
Competitive Hebbian Learning, which limits competition to shared kernels of
a Convolutional layer (CNN), our approach separates the feature space into
Depth-wise subsets of channels that correspond to the different classes. We use
a two-component loss function to maximize positive goodness and minimize neg-
ative goodness by competing locally between different representation vectors of
channel blocks using the proposed Channel-Wise Goodness Function (CWG).
This speeds up training, improves the ability to learn class-specific features, and
eliminates the need for negative data. Our approach outperforms baseline FF
implementations and recent literature approaches on simple image classification
datasets, achieving better accuracy and faster convergence rates.

ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9. 
Available from http://www.i6doc.com/en/. 

412



3 Proposed Approach

3.1 Network Architecture and Training Process

The network architecture, as demonstrated in figure 1, consists of sequential
convolutional layers which act as feature extractors for the attached classifiers:
(i) the FF-Goodness (Goodness CF) and (ii) the Softmax (Softmax CF).

Fig. 1: Network architecture and CWG function

The model learns to extract features through the convolution operation on
the total number of channels of the joint inter-class features. Through the pro-
posed objective function, we achieve feature space separation via the channel
dimension by associating specific subsets of the input channels to represent each
class enabling the model to learn compositional intra-class features. The layers
are trained independently, i.e., in a layer-wise manner, with the Adam Optimizer
[9]. The output features of each layer are passed through ReLU activations, fol-
lowed by Max-Pooling and Batch Normalisation (BatchNorm) [10].

The outputs of the last Convolutional Layer are flattened and used as input
to the fully connected classifiers. The Goodness Classifier follows the basis of
the FF Algorithm [2], overlaying the True and False labels as positive and neg-
ative features with the original goodness function. The Softmax Classifiers are
standard softmax layers trained using the Cross Entropy Loss function.

We employ two strategies to train each layer with a proper initialization
and give successive layers a headstart to achieve better and faster convergence.
The first strategy is progressive and involves the complete training of a layer
before progressing to the successive layer, while the second strategy involves the
scheduled training of each layer so that each layer is trained in parallel for some
epochs with their predecessors.

3.2 Channel-wise Goodness Function

We define the Goodness Factor, GF, as a matrix of size (N,C) where N is the
number of samples in the batch, and C the number of classes. It involves the
splitting of the feature matrix activations that are output from the convolutional
layer into subsets of channels each representing a different class. A class goodness
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vector, of size C is calculated as the spatial and channel-wise mean of the squared
activations that correspond to each subset of channels. The Goodness Factor is
simply the concatenation of the different class goodnesses of the batch.

The binary label mask for a mini-batch of N examples with C classes is
converted into a matrix Y ∈ {0, 1}

N×C
, where each row corresponds to an

example and each column corresponds to a class.
The Positive Goodness, g+ is a vector of size N , representing the goodness

score of the subset of channels associated with the true class of the input features.
It is computed by taking the dot product, (·) of the goodness matrix map, GF.
and the binary label mask transpose, YT.

The Negative Goodness g− is a vector of size N , that represents the ac-
tivations of the other subsets of channels which are associated with the false
classes and is computed by taking the dot product of GF, and the complement
of the binary label mask, 1-Y, divided by the number of false classes, (number
of classes - 1). This gives the mean of the squared activations for false classes.

g+ = GF ·YT , g− =
1

(C − 1)
GF · (1−YT ) (1)

The CWG loss function is proposed for achieving local feature separation in
addition to feature extraction. It is constructed as a weighted two-component
loss function, LCWG. The first component is a Positive vs Negative Cross En-
tropy Function, LPNCE that maximizes the positive goodness, g+, and mini-
mizes the negative goodness, g−. In this context, the symbol “‖” represents the
concatenation of the positive and negative components. With this Objective, we
treat the problem as a binary ‘one vs all’ classification task evaluating whether
the input was predicted to be the correct or the false class using the threshold,
θ, as the addend hyperparameter that determines the boundary between the
correct and false class.

LPNCE =
1

N

N
∑

n=1

log
(

1 + exp
(

(−g+n + θ)‖(g−n − θ)
))

(2)

The second component, computes the Negative Goodness Log-Likelihood of
the true class probabilities, which are obtained by applying the softmax function
to the respective class goodness score GFn,c where yn,c is the target class for the
nth example and the cth class.

LNGLL = −
1

N

1

C

N
∑

n=1

C
∑

c=1

log

(

exp(GFn,c)
∑C

j=1 exp(GFn,j)

)

yn,c (3)

LCWG = α× LPNCE + (1− α)× LNGLL (4)

4 Experiments and Results

This section outlines our experimental methodology and results for evaluating
the proposed model using established protocols from the relevant literature.
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Dataset and Training Setup. Our model was trained and evaluated on three
datasets: the Grayscale-image MNIST [11] and Fashion-MNIST [12], and the
RGB-image CIFAR-10 [13]. We compared the Softmax Classifier variant of our
proposed model, CWG+SF, against the performance of the original Forward-
Forward algorithm as stated in [2], the Reproduced FF Model FF(Rep*), and
with three FF-based models found in the literature namely, CaFo+CE, CaFo+SL
[14], and PFF-RNN [5]. The Cascaded Forward (CaFo), [14], alters the origi-
nal FF Algorithm by directly outputting label distributions for each cascaded
convolutional block, while also eliminating the need for negative sampling. The
Predictive Forward-Forward (PFF-RNN) approach utilizes a dynamic recurrent
neural system that integrates lateral competition, noise injection, and predictive
coding to conduct credit assignments in neural systems. The architecture used
for the reported set of experiments consists of 3 Convolutional Layers of 20, 80,
and 320 channels respectively, with different start and stopping training sched-
ules. In addition, we compare our model, CWG+SF, with a Backpropagation
Convolutional Model, BP (rep*), that has the same CNN + Softmax architec-
ture with CWG+SF, and the BP implemented in [2]. Our model was trained for
10, 15, and 20 epochs on MNIST, F-MNIST, and CIFAR-10 respectively, using
a 0.01 learning rate for all convolutional and fully-connected layers.

MNIST F-MNIST CIFAR-10

Test Error Training Test Error Training Test Error Training

(%) Epochs (%) Epochs (%) Epochs

BP (*) 1.4 40 10.73 40 39 40
BP (rep*) 0.8 20 8.4 15 20.1 20
FF (*) 1.37 60 - - 41 N/R
FF (rep*) 2.01 60 10.81 60 46.03 60
CaFo+CE 1.3 5000 - - 32.57 5000
CaFo+SL 1.2 5000 - - 33.74 5000
PFF-RNN 1.3 60 10.41 60 - -
CWG+SF 1.3 10 9.53 15 28.22 20

Table 1: Testing Error and Training Epochs on MNIST, F-MNIST, CIFAR-10

Quantitative Results. The results of our experiments on MNIST, F-MNIST,
and CIFAR-10 datasets are presented in Table 1. On MNIST, the proposed
CWG+SF achieved a testing error of 1.3%, which is comparable to the other
FF-inspired models such as CaFo+CE and CaFo+SL which also utilize convo-
lutional layers. However, their model required training for 5000 epochs which
is far longer than our approach which required only 10. On F-MNIST, CWG
achieved a testing error of 9.53%, which is the lowest among all the models apart
from the reproduced BP. The next best model, PFF-RNN, achieved a testing
error of 10.41% but was trained for 60 epochs. On CIFAR-10, the difference in
performance is magnified: CWG+SF achieved a testing error of 28.22%, which
is significantly better than all the other Non-BackPropagation (non-BP) mod-
els. The second-best non-BP model, CaFo+CE, achieved a significantly lower
performance at 32.57% while being trained again for 5000 epochs in comparison
with our CWG+SF that required 20. The BP (rep*) model is the only model
that outperforms CWG+SF while being trained for similar epochs. However,
with layer-wise training, our approach consumes memory equivalent to its largest

ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9. 
Available from http://www.i6doc.com/en/. 

415



layer, as there is no need to store neural activities and gradients. On CIFAR-10
input dimensions, our model consumes 0.82M parameters, whereas an identical
BP (rep*) architecture requires 1.06M parameters.

Discussion. Our research is a proof of concept that the introduction of the
Convolutional Channel-wise Goodness in the Forward-Forward Algorithm en-
ables the algorithm to handle complex problems better through simultaneous
feature extraction and separation. Our results demonstrate that CWG outper-
forms significantly other non-backpropagation approaches in both testing accu-
racy and convergence rate, especially in comparison with the other CNN-based
FF implementations supporting our claim that Channel-wise Goodness enables
the FF algorithm to work better with CNNs. This is a significant step for-
ward for the Forward-Forward Algorithm since the gap observed between the
original FF algorithm and the well-established backpropagation techniques is
narrowed while eliminating the need for the construction of negative data. This
was achieved without the utilization of high-level regularization and architecture
techniques that appear in state-of-the-art backpropagation implementations and
signifies the potential for further improvements in this direction.
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