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Abstract. Weightless Neural Networks (WNN) are good candidates
for Federated Learning scenarios due to their robustness and computa-
tional lightness. In this work, we show that it is possible to aggregate the
knowledge of multiple WNNs using more compact data structures, such as
Bloom Filters, to reduce the amount of data transferred between devices.
Finally, we explore variations of Bloom Filters and found that a particular
data-structure, the Count-Min Sketch (CMS), is a good candidate for ag-
gregation. Costing at most 3% of accuracy, CMS can be up to 3x smaller
when compared to previous approaches, specially for large datasets.

1 Introduction

Weightless Artificial Neural Networks (WNNs) [1] have a high discriminative ca-
pacity along with reduced computational load, which makes them ideally suited
for applications in which multiple devices connected through the internet collab-
orate in distributed, semi-autonomous ways, for monitoring and control tasks
driven by machine learning algorithms. The robustness, simplicity, and light
computational load of WNNs make them an ideal model for different scenarios
such as IoT, open-set recognition, and use in constrained, and embedded devices.

The above factors also make WNNs a good candidate for Federated Learning
(FL) scenarios. FL is decentralized approach to training machine learning mod-
els that allows multiple devices to collaboratively train a global model without
exchanging user data. Each device trains a local model using only local data,
and the local models are then aggregated into a global model. The aggregation
of the local models can be performed in different ways, such as averaging the
weights of the models, or by using a weighted average [2].

In this work we show how to aggregate the knowledge of multiple WNNs
into a single, global, model. We also show how to aggregate more compact data
structures used in WNNs, such as Bloom Filters [3], to reduce the amount of
data transferred between devices. Finally, we explore variations of Bloom Filters
and show that a particular data-structure, the Count-Min Sketch (CMS), is a
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good candidate for this task. Costing at most 3% of accuracy, CMS can be up
to 3x smaller when compared to previous approaches.

2 Weightless Neural Networks

A n-tuple classifier [1] is a binary pattern classifier composed by random access
memories (RAMs) R, where each RAM is a one-bit vector of size 2n that can
represent all binary patterns of size n, the addresses. The classifier can be trained
to learn the binary patterns of size n (known as tuple size) from a training set.

The training process is illustrated in Figure 1. The training set is a collection
of samples, i.e., binary patterns of size m. The training process consists in
iterating once over all samples of the training set. Each sample is divided into
m
n patterns of size n, based on a random mapping M . Then, each pattern will
become an address that will be used to access the respective RAM and record
the presence of that pattern. Once trained, given a sample, the similarity score
of this sample can be calculated by counting the number of patterns presented
in the respective RAMs. This score is usually used to discriminate the class of
the sample.
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Fig. 1: Training a n-tuple classifier model.

WiSARD [4] is a n-Tuple classifier composed of several RAM-discriminators,
one for each class to be discriminated. Unlike traditional n-tuple classifiers, a
WiSARD is composed by a set of D discriminators, where each discriminator
has a set of m

n RAMs. A single-discriminator WiSARD (which is equivalent
to n-Tuple classifier) is illustrated in Figure 1. Each discriminator is trained
with samples from a specific class, as each discriminator aims to identify that
class samples. The inference of the WiSARD model is performed by calculating
the similarity score of the sample for each discriminator, and the class with the
highest similarity score is the predicted class.

As the number of samples of the training dataset grows, the WiSARDmodel’s
RAMs may suffer from saturation, especially when the dataset presents many
outliers. DRASiW [5] is an extension of WiSARDs that stores the frequency
of observations of a given pattern into the RAM, instead of just relying on a
presence bit. Thus, the RAM ceases to be a one-bit vector and becomes a vector
of frequency counters. DRASiW allows the filtering of noisy patterns by using a
technique called Bleaching [6], where patterns that occur less than a threshold are
considered too uncommon and do not contribute to the discriminator’s response.
In this work, we use the DRASiW model, where RAMs are vectors of integers,
being more robust to noisy data.
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3 Efficient Aggregation Methods for WiSARD models

Considering a scenario with several homogeneous WNNs 1 models, the knowledge
aggregation can be done by combining the corresponding RAM’s contents. As
each RAM cell counts the number of occurrences (i.e., frequency) of a given
pattern, the models’ knowledge can be aggregated by adding the frequencies of
the patterns in each model. This is called frequency aggregation.

However, even though the aggregation function itself is not computationally
expensive, in terms of data transfer cost, a naive approach requires transferring
the contents of all RAMs. In fact, the amount of data that needs to be transferred
is the same as the model’s size. Hence, the transfer cost (in bytes) is Tcost =
D ·R ·C ·2n, where C is the number of bytes used to represent the integer value,
D is the number of discriminators, and R is the number of RAMs. To deal with
those (potentially huge) amounts of data, RAMs are commonly implemented
using dictionary/hash table structures. This approach is called Dict-WiSARD
and can greatly reduce the amount of data stored. However, even so, in the
worst case this approach requires O(2n) bytes to be transferred.

Da Silva et al. [7] were the first to explore the use of Dict-WiSARD to per-
form collaborative learning. Despite the reduced memory consumption, Santiago
et al. [3] have shown that Dict-WiSARDs still consume a huge amount of mem-
ory when compared to other data structures, such as Bloom Filters, leading to
increased data transference cost.

3.1 Bloom Filters as Space-Efficient Data Structures

Santiago et al. [3] suggest that Bloom Filters (BF) can be applied to improve the
design of discriminators, allowing one to explore a wide range of solutions trad-
ing between memory costs and classifier’s performance. BFs are space-efficient
probabilistic data structures used for membership queries. The false positive
rate (FPR) of the BF, i.e., the probability of obtaining a wrong answer, de-
pends on the number of different hash functions, the available positions and the
number of elements added 2. In terms of space occupation, BF are linear on
the number of available positions. However, to implement DRASiW systems,
variations of BFs that allow counting should be used [3].

Counting Bloom Filter [8] (CB) is similar to a standard BF except that it
uses a frequency vector and therefore the CB can be used to estimate the number
of insertions of a given element. Thus, it can be used as RAMs to return the
maximum number of observations of a given address. The size of CB is the same
as the BF, but multiplied by a constant, which is the size of the integer used to
represent the frequency.

Count-Min Sketch [9] (CMS) is another probabilistic data structure used to
track how many times an element appeared in a data stream. Similarly to CB,
CMS attempts to approximate the frequency of an element. Instead of having

1Models that share the same parameters (M and n) and perform the same task
2In fact, the filter size is inversely proportional to the desired FPR, meaning that increasing

the filter size reduces the FPR while allowing for more elements to be stored.
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a single frequency vector of size W as CB, where the element is hashed with k
hash functions, CMS adds a dimension, d (depth), based on the number of hash
functions. Thus, the data structure is a matrix of size W · d.

One interesting property of BFs is that they can be joined [10]. Given two
BFs that share the same parameters, e.g., B1 and B2, the union of both results
is a new BF B3 = B1 ∪ B2 containing the elements present in both sets. In
the context of WNNs, BFs are not only space-efficient data structures to design
RAMs [3] but are also good structures to perform knowledge aggregation, as
they support the union operation3. It is worth noticing that the choice of the
data-structure, as well as its parameters, will impact not only on the space
complexity of the aggregation, but also on the performance. The next sections
present experiments used to evaluate these aspects when aggregating WNNs.

4 Experimental Setup

We evaluated the memory footprint and performance of the aggregated model
for each data-structure by experimenting with different datasets and parameters.
Each experiment consists of training 4 homogeneous WNNs individually, each
using a 25% partition of the dataset. Then the models are aggregated into a
single model, which is evaluated. Each experiment was run three times with
different partitions of the dataset, and the results were averaged. We used the
public datasets described in Table 1. Most coming from the UCI repository4,
plus MNIST5, and MotionSense6. A specially designed library of modules, the
wisardlib package, was implemented, being the first pure python package that
implements scikit-learn interfaces for training and evaluating WNN models7.

Dataset Size (KB) Classes #Train #Test Balanced Performance Memory (KB)
breast cancer 144 2 398 171 no 0.95 9.58
glass 24 6 149 65 no 0.64 12.40
iris 12 3 105 45 yes 0.96 1.06
letter 2664 26 1400 6000 yes 0.86 301.63
mnist 53672 10 60000 10000 yes 0.91 8975.11
motionsense 12512 6 3414 1020 yes 0.63 1448.64
satimage 1864 6 4501 1929 no 0.87 108.21
vehicle 132 3 676 170 yes 0.69 5.57
wine 24 3 124 54 no 0.96 3.11

Table 1: Description of the datasets used in the experiments, the performance
(f1-score or accuracy) and memory footprint using Dict-WiSARD (baseline).

Since the datasets contain real-valued data, a preprocessing step converts
each sample into an array of binary values. Table 2 shows the encoder used and
the resolution for each of the datasets. The thermometer encoding is a way to
represent a number using a binary code where each bit position corresponds to a
value, and the bit is set to 1 if the value is less than a threshold. The resolution
is the size of binary code. In all the cases where thermometer encoding did not

3CB and CMS data structures also support the union operation
4https://archive.ics.uci.edu/ml/index.php
5http://yann.lecun.com/exdb/mnist/
6https://github.com/mmalekzadeh/motion-sense
7https://github.com/otavioon/wisardlib/
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Dataset Encoder Resolution n Bleaches

breast cancer Dist. Thermometer 16 16 2, 5, 10
glass Dist. Thermometer 64 24 3, 5, 10, 15, 20
iris Dist. Thermometer 20 16 2, 5, 8, 10, 15

letter Dist. Thermometer 14 16 30
mnist Dist. Thermometer 16 16 40

motion sense Thermometer 32 32 5, 10, 20
satimage Thermometer 20 20 5
segment Dist. Thermometer 16 16 15, 20, 25, 30, 40
vehicle Dist. Thermometer 16 16 2, 5, 8, 10, 15
wine Dist. Thermometer 16 16 2, 5, 8, 10, 15

Table 2: Parameters used for each experiment.
achieve good results, the distributive thermometer was used. The distributive
thermometer [11] is a variant of the thermometer encoder, where the data is
split into percentiles of same probability and then encoded. The tuple size (n)
was defined based on the work of Santiago et al. [3], as well as the values for the
encoder and the resolution, that were then tuned experimentally. As saturation
may affect the classification results, we experimented with different values of
bleach 8. Finally, for CB, the false positive rate (FPR) was set to 0.02, 0.05,
and 0.08 based on the findings reported by Santiago et al. [3]. For CMS, the
width (W ) was set to 20, 50, and 100 and depth (d) of 2, 3, and 5. These values
were chosen because they are close to the CB.

5 Experimental Results

Table 1 presents the performance and the memory footprint of the aggregated
model using the traditional Dict-WiSARD implementations. These results are
used as baseline, and follow the same approach as da Silva et al. [7]. Figure 2
presents the performance obtained with each configuration in relation to the
baseline (dashed line). Values close to 1 show that the performance of the ag-
gregated model is similar to the performance of the baseline. It is worth noticing
that the performance of the aggregated model are similar to the baseline for al-
most all configurations when using the smaller datasets. For larger datasets (let-
ter, motion sense and MNIST) the performance loss is significant in some cases
(up to 35%). This happens because probabilistic data-structures with smaller
size are more likely to have more false positives, leading to higher performance
losses when the number of elements inserted and their variety are high.
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Fig. 2: Performance improvement in relation to baseline.

Figure 3 shows the ratio of the size of each configuration in relation to the
baseline configuration, for each of the datasets. Some configurations are up to

8All results in the text are reported with the best parameters set. Besides that, for unbal-
anced datasets the f1-score was reported instead of accuracy.
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46× larger than the baseline. The CMS W=20 D=3 configuration is the one
that produces the smallest memory footprint, but leads to a performance loss
of 35%, making it unfeasible. There are 2 configurations CMS W=50 D=2 and
CMS W=50 D=3 that lead to a performance loss of less than 3% and 2% in all
datasets, with almost one third or one half of the memory footprint, respectively.

46.20 35.44 29.92 2.48 3.61 5.86 8.68 17.13 28.39
14.28 10.95 24.66 2.04 2.97 4.83 7.15 5.29 8.78
41.18 31.59 26.67 2.21 3.21 5.22 7.73 15.27 25.31

31.81 24.40 20.60 1.71 2.48 4.03 5.97 11.79 19.55
20.55 15.76 13.31 1.10 1.60 2.61 3.86 7.62 12.63
6.55 5.02 4.24 0.35 0.51 0.83 1.23 2.43 4.02

9.05 6.94 5.86 0.49 0.71 1.15 1.70 3.35 5.56
4.89 3.75 3.17 0.26 0.38 0.62 0.92 1.81 3.01
2.87 2.20 1.86 0.15 0.22 0.36 0.54 1.06 1.76

CB FPR=0.02 CB FPR=0.05 CB FPR=0.08 CMS W=20 D=2 CMS W=20 D=3 CMS W=50 D=2 CMS W=50 D=3 CMS W=100 D=3 CMS W=100 D=5
mnist

motion_sense
letter

satimage
breast_cancer

vehicle
wine
glass

iris

0

10

20

30

40

Fig. 3: Ratio of size of each configuration in relation to its baseline.

6 Conclusions

In this work we evaluate the impact of employing Bloom Filters on WNNs to re-
duce the models’ memory footprint on federated learning scenarios. We explored
different Bloom Filter variants on nine different classification tasks/datasets and
show that the Count-min sketch data structure is one of the best structures for
this kind of problem with relatively smaller sizes at reasonable accuracy. Costing
at most 3% of accuracy, the Count-min sketch with width of 50 and depth of 2
can be up to 3x smaller than Dict-WiSARD implementations.

References

[1] M Morciniec and R Rohwer. The n-tuple classifier: Too good to ignore. 1995.

[2] T Li, AK Sahu, A Talwalkar, and V Smith. Federated learning: Challenges, methods,
and future directions. IEEE signal processing magazine, 37(3):50–60, 2020.

[3] L Santiago, L Verona, F Rangel, F Firmino, DS Menasché, W Caarls, M Breternitz Jr,
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