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Abstract. Model stealing aims at inferring a victim model’s functionality
at a fraction of the original training cost. While the goal is clear, in
practice the model’s architecture, weight dimension, and original training
data can not be determined exactly, leading to mutual uncertainty during
stealing. In this work, we explicitly tackle this uncertainty by generating
multiple possible networks and combining their predictions to improve the
quality of the stolen model. For this, we compare five popular uncertainty
quantification models in a model stealing task.

Surprisingly, our results indicate that the considered models only lead to
marginal improvements in terms of label agreement (i.e., fidelity) to the
stolen model. To find the cause of this, we inspect the diversity of the
model’s prediction by looking at the prediction variance as a function of
training iterations. We realize that during training, the models tend to
have similar predictions, indicating that the network diversity we wanted
to leverage using uncertainty quantification models is not (high) enough
for improvements on the model stealing task.

1 Introduction

Machine Learning as a Service (MLaaS) enables an easy and cost-effective way
to develop machine learning services. However, it also increases the risk of model
stealing for attackers who can exploit barrier-free invocations, such as APIs. By
training a surrogate model, attackers can infer functionalities from a black-box
model at a fraction of the original training costs [1]. Previous studies assumed
either full or partial knowledge about the network architecture [2, 3], which is
often already indicative for the network functionalities, or attempted to reverse
engineer it through probing [4]. However, in practice, the architecture cannot
be precisely determined, leading to mutual model uncertainty.

In this work, we hypothesize that the attacker can explicitly tackle this uncer-
tainty by simultaneously considering multiple networks from the model space,
which is naturally done in Bayesian model averaging. Therefore, we evaluate
five different uncertainty quantification models, which sample from a (learned)
parameter distribution during inference, as the surrogate model to reinterpret
each sample from the parameter distribution as one possible target network:
Bayesian Neural Networks [5], Monte Carlo Dropout [6], Concrete Dropout [7]
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and the straight-forward but more costly approach of deep and heterogeneous
ensembles [8, 9]. To test our hypotheses, we compare the model-stealing per-
formance of the uncertainty quantification models with a single deterministic
model. In all approaches, we consider different-sized target models trained for
image classification tasks on CIFAR10 [10] and SVHN [11].

Our experiments show that uncertainty quantification models only lead to in-
significant improvements over a single-model baseline, implying that the Bayesian
model average does not lead to improvements in mimicking the functionalities of
the target model. To gain a deeper understanding of this, we analyzed the vari-
ance of the model predictions as a function of training iterations. This shows
that during training, the models converge to similar predictions, indicating a
limited function variability on the test data. In summary, we make the following
key contributions:

• We present the first evaluation of uncertainty quantification models used
in the context of model stealing and evaluate them in terms of fidelity.

• We further discuss their limitations by analyzing fidelity in relation to the
model’s output variance.

2 Background

All uncertainty quantification methods in this paper derive their final network
predictions based on the following approximation

f(y|x) ≈ 1

M

M∑
i=1

f(y|x, θi) with θi ∼ q(θ) , (1)

where x and y are the input and corresponding label, and θi are parameters of
the model drawn M times from an underlying distribution. In the following, we
briefly explain the differences of q(θ) for each network type

Bayesian Neural Networks. Bayesian neural networks (BNNs) are often
referred to as a principal way to quantify uncertainty. One specific characteristic
of those networks is the derivation of a posterior distribution q(θ) over model
parameters. In this setting, eq. (1) could be interpreted as the Monte Carlo
approximation of the posterior predictive distribution.

Monte Carlo Dropout. Monte Carlo (MC) Dropout is an (approximate)
Bayesian method where neurons are randomly dropped with a fixed dropout
probability during training as well as during inference. These pattern of deacti-
vated neurons are named dropout masks. In this setting q(θ) could be interpreted
as the distribution over these dropout masks.

Concrete Dropout. Contrary to MC dropout, the dropout probability in
concrete dropout (CD) is learned through a continuous relaxation of the discrete
dropout mask. The interpretation of q(θ) stays nevertheless identical.

Deep Ensembles. In Deep Ensembles (DEs) multiple networks with the
same network architecture but different initial weight values are trained. When
trained with weight decay, these can be seen as samples from a posterior q(θ).
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Table 1: Number of parameters for the target models and their accuracies in %
for CIFAR10 and SVHN.

Name Parameters CIFAR10 Accuracy SVHN Accuracy

Small 196,352 83.6 88.5
Medium 2,040,352 88.2 92.0
Large 63,582,218 93.7 95.6

Heterogeneous Ensembles. Going one step further, Heterogeneous En-
sembles (HEs) combine different network architectures with different properties
to an ensemble enabling a broader exploration of the function space.

3 Stealing with Uncertainty Quantification Models

Adversary Goal. The attacker’s goal is to create a surrogate model f̂ that
maximizes the prediction agreement, referred to as fidelity [12], given by

1

|Dtest|
∑

xi∈Dtest

1{f̂(xi) = f(xi)} , (2)

with a target model f for a test set Dtest, where 1{·} is an indicator function.
We assume that the adversary has knowledge of the semantics of the black-

box oracle; that is, they know the target model’s input representation and the
corresponding task. Furthermore, we also assume the attacker has access to pub-
lic task-relevant pretrained models or datasets. The adversary has no knowledge
of the inner workings of the target model. This includes the architecture, hyper-
parameters, training procedure, and training dataset. Given an image x ∈ X,
the adversary receives a target label y ∈ {0, . . . , k}, where k is the number of
classes. Furthermore, we assume that the attacker can send unlimited queries
to the target and retrieve the corresponding labels [1].

Experimental Setup. All experiments are conducted on the CIFAR10 and
SVHN datasets while using four NVIDIA GeForce RTX 2080 Ti.We use the first
half of the respective test set to evaluate the target models. Fidelity calculations
of the surrogate models are conducted on the second half.

Target models. We consider three different target models of varying sizes. A
small and a medium-sized model were trained from scratch. As a large model,
we fine-tuned a pretrained ResNet152-V2. The training is conducted on half
of the training datasets, respectively. We use the categorical cross-entropy loss
and the Adam optimizer with an initial learning rate of 1e− 5. The number of
parameters and accuracies are reported in Table 1.

Surrogate models. For training all surrogate models, the adversary generates
a surrogate dataset by querying the target model with the second half of each
training dataset. We used pretrained architectures and finetuned them for 30
epochs for all models except for the BNN where we used 50 epochs because of
slower training convergence. We use the following surrogate models:
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Table 2: Fidelity of the surrogate models in % for different network architectures
and sizes. Bold numbers highlight the maximum fidelity.

(a) CIFAR10

Target Baseline MCD CD BNN DE HE
Res Inc Res Inc Res Inc Res Inc Res Inc -

Small 85.18 85.14 85.10 84.82 85.48 84.80 84.88 83.24 85.88 85.50 86.96
Medium 88.91 89.38 89.86 89.62 89.72 89.52 88.48 86.00 90.04 90.06 90.49
Large 93.72 92.44 93.24 92.18 93.20 92.52 90.72 87.84 93.94 93.04 94.09

(b) SVHN

Target Baseline MCD CD BNN DE HE
Res Inc Res Inc Res Inc Res Inc Res Inc -

Small 91.06 90.89 90.65 90.17 91.33 90.89 91.15 90.88 92.45 91.78 92.55
Medium 92.93 92.59 92.61 92.40 93.24 92.29 92.87 92.11 93.68 93.52 94.08
Large 95.74 94.38 95.07 94.42 95.85 94.48 95.06 94.16 96.52 95.65 95.84

Baseline. A ResNet152V2 (Res) and an InceptionV3 (Inc) architecture
with an added feed-forward classification head.

MC Dropout (MCD). As an extension of the baseline model, where we added
two dropout layers each with a dropout rate of 50% before the last two layers in
the feed-forward head.

Concrete Dropout (CD).Modifies the baseline model by replacing all layers
of the feed-forward head with concrete dropout layers of the same width.

Bayesian Neural Network (BNN). The baseline models architecture is al-
tered by replacing all layers of the feed-forward head by probabilistic reparam-
eterization layers and trained via BayesByBackprob [13].

Deep Ensemble (DE). Consists out of six baseline models each with a ran-
domly initialized classification head.

Heterogeneous Ensemble (HE). Combines six different pre-trained model
architectures: ResNet50, ResNet152V2, VGG16, VGG19, InceptionV3, and
DenseNet169.

For inference, 50 forward passes for the dropout and Bayesian models are used.

Fidelity results. From the fidelity of the different surrogate methods and ar-
chitectures in Table 2, it can be seen that a ResNet152V2 surrogate architecture
leads to improved fidelity for the large target model. This indicates that a higher
degree of similarity between the target and surrogate architecture positively im-
pacts the effectiveness of model stealing. Conversely, other architectures only
marginally influence fidelity. We further note that the BNN does not increase
the fidelity for any target model in comparison to the baseline model. Similarly,
MC dropout produces only minor improvements for stealing the medium target
model using CIFAR10. Improvements over the baseline for model stealing with
CD can be seen for several combinations of target size and model architectures
for both datasets. However, an ensemble of models consistently improves fidelity,
while specifically HEs consistently reach the highest fidelity for CIFAR10.

Vanishing prediction variance. Our initial experiments raise the question
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(a) CIFAR10 and ResNet152V2 (b) SVHN and InceptionV3

Fig. 1: Variance of the predictions generated by the subnetworks for each method
plotted over the course of training. We show the variances for two combinations
of dataset and surrogate architecture.

of why uncertainty quantification models only slightly improve the performance
of model stealing attacks. We hypothesize, that the induced network variability
through sampling does not lead to very diverse networks, such that they are
not able to eliminate potential failure cases. To test this, we show in Figure 1
the prediction variance calculated on the test set generated by the small target
model over the course of the training epochs for all architectures. A lower vari-
ance in the different output predictions stems from the same/similar predictions
of all subnetworks, which indicates a weak model exploration of subnetworks
on these datapoints. We observe that the prediction variance for MC dropout
and the BNN first increases, probably due to an initial warm-up phase with
small weights. In the further course, the variance decreases to less than 0.002.
This level is also not surpassed by CD. Furthermore, we observe that the pre-
diction variance of our DE increases during training. This could be traced back
to findings from Fort et al. [14], where the authors show that “deep ensemble
tend to explore multiple modes in function space”, whereas BNNs often focus
on a single mode, leading to less variability. Compared to the others, only the
HE has a notably different prediction variance. Note, that the HE uses differ-
ent model architectures and different pre-training, while only the feed-forward
heads in the Bayesian, dropout, and deep ensembles models induce variability.
Consequently, heterogeneous models in an ensemble preserve higher prediction
variance, indicating higher function space diversity which could be the cause for
their improved fidelity.

This diminishing variance over the course of training leads us to test the
practical implications of the amount of forward passes during the prediction of
the Bayesian and dropout models. Hence, we reduced the amount of forward
passes to six, the same number of sub-models we used in the ensembles. We
observe that indeed, the amount of forward passes has little to no impact on the
final fidelity of the surrogate models.
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4 Conclusion

The availability of MLaaS and the high costs of training ML models demon-
strate model stealing as a considerable security threat. In practice, however,
the architecture of a black-box model and the characteristics of the weights can-
not be determined precisely, introducing an inherent uncertainty for a successful
extraction. In this work, we explicitly tackle this uncertainty when staging a
model-stealing attack by using models for uncertainty quantification, which al-
low the attacker to simultaneously probe multiple network configurations.

Our findings demonstrate that, in general, this approach only leads to
marginal improvements. Furthermore, we have shown that it is difficult to
maintain a high model variability for increasing training epochs. Lastly, we
observe that combining different architectures into an ensemble can slightly im-
prove upon the baseline, even if the latter uses the same architecture as the
victim model.
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