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Abstract. We introduce and investigate the iterated application of Gen-
eralized Matrix Relevance Learning for the analysis of feature relevances in
classification problems. The suggested Iterated Relevance Matrix Analysis
(IRMA), identifies a linear subspace representing the classification specific
information of the considered data sets in feature space using General-
ized Matrix Learning Vector Quantization. By iteratively determining a
new discriminative direction while projecting out all previously identified
ones, all features carrying relevant information about the classification can
be found, facilitating a detailed analysis of feature relevances. Moreover,
IRMA can be used to generate improved low-dimensional representations
and visualizations of labeled data sets.

1 Introduction

Prototype-based systems such as Learning Vector Quantization (LVQ) [1, 2]
can serve as genuinely interpretable and transparent classification tools [3]. In
combination with the use of adaptive distance measures [4, 5], they provide
valuable insights into the structure of the problem at hand and into the relevance
of features for the actual classification task. However, the presence of correlated
features or multiple sets of features providing similar performance can lead to
ambiguous relevance assignments and non-unique outcome of training. This
frequently complicates the interpretation of relevance learning, see e.g. [6, 7].

Here, we suggest and study an extension of Generalized Matrix LVQ (GM-
LVQ) [4, 5]. We show that the successive removal of dominantly relevant direc-
tions in feature space and subsequent re-training of GMLVQ with the remaining
information allows to infer the most class-relevant subspace. This Iterated Rel-

evance Matrix Analysis (IRMA) facilitates the detailed analysis of feature rele-
vances - especially in presence of multiple weakly relevant features. Moreover,
the discriminative low-dim. representation and visualization of labeled data sets
can be enhanced compared with the basic GMLVQ approach [4, 5]. A simi-
lar approach has been considered earlier for Support Vector Machines [11]. In
Section 2 we introduce the suggested procedure. The illustrative application of
IRMA to example artificial and benchmark data sets is presented in Sec. 3 and
we summarize and discuss possible extensions in Sec. 4.
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2 Iterated Relevance Matrix Learning

An LVQ system assigns N -dim. feature vectors x ∈ R
N to one of C classes

labeled by S ∈ {1, 2, . . . , C}. The nearest prototype classification is based on
the distances of x from a set of M prototypes {wj ∈ R

N}Mj=1. Each prototype
represents one of C classes as denoted by the labels S(wj) ∈ {1, 2, . . . , C}.

GMLVQ in its basic variant [4] employs a global distance measure of the form

d(wj ,x) = (x−wj)
⊤Λ(x−wj), with Λ = Ω⊤Ω. (1)

Here, the relevance matrix Λ ∈ R
N×N is re-parameterized in terms of an auxil-

iary matrix Ω ∈ R
N×N as to guarantee that Λ is symmetric and positive semi-

definite with d(wj ,x) ≥ 0. Extensions to local relevance matrices or rectangular
Ω have been considered in the literature [4, 5].

Given a set of data {xµ, Sµ}Pµ=1 , prototypes wj and matrix Ω are optimized
in a training process which is guided by the minimization of the cost function

E =
∑P

µ=1 φ
[
dΛ(w+,xµ)−dΛ(w−,xµ)
dΛ(w+,xµ)+dΛ(w−,xµ)

]
, with φ(z) = z in the following. (2)

For a given example {xµ, Sµ}, w+ denotes the closest correct prototype with
d(w+,xi) ≤ d(wj ,x

µ) among all wj with S(wj) = Sµ. Correspondingly, w−

is the closest wrong prototype carrying a label different from Sµ. In practice,
GMLVQ ensures that the data points are linearly mapped by Ω into a space
where classes are separated as well as possible. An additional normalization
of the form

∑N

i=1 Λii =
∑N

i=1 Ω
2
ij = 1 is imposed in order to avoid numerical

instabilities and support comparability [4]. The resulting diagonal entries Λjj

quantify the relevance of dimension j, provided all features xj are of the same
magnitude [4]. Throughout the following we achieve this by applying a z-score
transformation based on the actual set of training data.

The symmetric semi-definite relevance matrix can be expressed as:

Λ =
∑N

j=1 λjvjv
⊤

j , with Λvj = λjvj and Ω =
∑N

j=1

√
λjvjv

⊤

j (3)

being a canonical solution of Λ = Ω⊤Ω. We assume that eigenvalues are ordered
as λ1 ≥ λ2 . . . ≥ λN . After training, the relevance matrix typically assumes a low
rank and is dominated by a few leading eigenvectors, see [8] for a detailed discus-
sion and analysis. This property facilitates e.g. the discriminative visualization
of the data set in terms of projections onto the first eigenvectors [4, 5].

In two-class problems, for instance, the training typically identifies a single,

most discriminative direction v
(0)
1 with λ

(0)
1 ≈ 1 and Λ(0) ≈ v

(0)
1 v

(0)⊤
1 . Here and

in the following the superscript (0) refers to the results of a first, unrestricted

GMLVQ training. In such a situation, the eigenvectors v
(0)
j with j ≥ 2 form an

arbitrary basis of the space orthogonal to v
(0)
1 with no particular order. Note,

however, that the corresponding (N − 1)-dim. subspace very likely still contains
relevant information about the classes, reflecting the potential ambiguity of the

relevance assignment. The selection of a particular v
(0)
1 may depend strongly on

the actual training data set, possibly leading to an overfitted relevance analysis.
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In order to obtain more comprehensive insights, we can perform a second
GMLVQ training process which is restricted to an orthogonal subspace by con-
sidering a distance measure of the form (1) with Λ(1) = Ω(1)⊤Ω(1) under the

constraint that Ω(1)
v
(0)
1 = 0. This can be achieved by applying the projection

Ω(1) → Ω(1) [I−v
(0)
1 v

(0)⊤
1 ] after each update step, followed by the normalization

of Ω(1). In other words, this projection ensures that contributions corresponding

to v
(0)
1 are disregarded in the feature space. Now, the leading eigenvector v

(1)
1

of the resulting Λ(1) represents the most discriminative direction orthogonal to

v
(0)
1 . The degree to which v

(1)
1 carries class relevant information can be evalu-

ated in terms of a performance measure of the restricted classifier, e.g. by the
balanced accuracy BAC(1), estimated in an appropriate validation procedure.
Obviously, we can apply the idea iteratively and obtain a sequence of vectors

v
(j)
1 each of which is orthogonal to all v

(i)
1 with i = 0, 1, . . . , j − 1. In each step

j ≥ 1 of this Iterated Relevance Matrix Analysis (IRMA) we perform GMLVQ
training where the projection

Ω(j) → Ω(j)
[
I −∑j−1

i=0 v
(i)
1 v

(i)⊤
1

]
(4)

is applied after each update together with the appropriate normalization. We
will refer to the unrestricted GMLVQ training as the 0-th iteration. The key
step (4) is reminiscent of the subspace correction in [9], where it however serves
a different purpose.

The procedure can be terminated when the classifier in iteration (k + 1)
achieves only random or near random classification performance as signaled by,
for example, a BAC(k+1) ≈ 0.5. The obtained subspace

V = span{v(0)
1 ,v

(1)
1 , . . .v

(k)
1 } with associated projections yµi = x

µ · v(i)
1 (5)

can be interpreted as to contain (approximately) all class relevant information
in feature space. Hence, it can serve for further analysis of feature relevances.
An obvious application could be the low-dim. representation of labeled data sets
in terms of the y

µ
i , e.g. for the purpose of two- or three-dim. visualizations.

3 Illustrative applications

Artificial Data: We first consider an extremely simple and clear-cut artificial
two-class data set illustrated in Fig. 1 (a). Feature vectors x ∈ R

4 comprise two
informative components x1, x2 in which each class corresponds to an elongated
Gaussian cluster. The remaining components are independently drawn from an
isotropic zero mean, unit variance normal density. As can be seen in panel (a),
feature x2 should be sufficient to separate the classes with almost 100% accu-
racy. However, classes also separate along x1, albeit less perfectly. Unrestricted
GMLVQ with one prototype per class realizes near perfect classification with
BAC(0) ≈ 0.99 (w.r.t. training and test) in a balanced data set of 600 samples,
where the training set contains 150 randomly drawn examples and the remaining
450 form a test set. Projections on the leading eigenvectors are shown in panel
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Fig. 1: Artificial data: original features x1, x2 of the data set (a), projections on

v
(0)
1 , v

(0)
2 of unrestricted GMLVQ (b), and projections on the eigenvectors v

(0)
1

and v
(1)
1 of the unrestricted system and the first iteration of IRMA in (c).

(b) of Fig. 1. The dominating eigenvector is v
(0)
1 ≈ (0.19, 0.98, 0.1, 0.05)⊤ corre-

sponding to Λ
(0)
jj ≈ δj,2. The orthogonal v

(0)
2 is essentially random as indicated

by the absence of a separation of classes, resulting in an effectively one-dim.
visualization.

In the first IRMA iteration, the leading eigenvector of Λ(1) approaches the

second relevant direction: v
(1)
1 ≈ (0.92,−0.16,−0.02,−0.36)⊤ with Λ

(1)
jj ≈ δj,1.

As expected, the performance drops compared to the unrestricted system: we
observe a BAC(1) of 0.68 (training) and 0.70 (test). As shown in panel (c) of Fig.

1, the projections y0, y1, cf. Eq. (5), of the data set onto v
(0)
1 and v

(1)
1 display

both relevant separating directions and reproduce the cluster structure of the
original features x1, x2. Already in the second iteration of IRMA, the accuracy
drops to BAC(2) ≈ 0.54 and 0.51 for training and test data, respectively. As
expected, no further relevant directions can be identified.

Wisconsin Diagnostic Breast Cancer data: This benchmark data set from the
UCI Machine Learning Repository [10] contains 569 samples with 30 features
extracted from cells in an image of a fine needle aspirate of a breast mass (357
benign, 212 malignant). For illustration purposes, we train a GMLVQ system
using 25% randomly sampled training data, and use the remaining 75% as a
test set. Fig. 2 shows the projection of the training data into GMLVQ space at
the end of training for the unrestricted system (iteration 0, (a)), and after the
1st iteration (b). Fig. 2 (c) shows the training data projected onto the leading
eigenvector of the 0th and 1st iteration, where you can see a clear discrimination
of the two classes along both coordinate axes. The leading eigenvalue of the
GMLVQ system from both the 0th and 1st iteration is ≈ 1.0 respectively, mean-
ing that there is no contribution from non-dominant eigenvectors from iteration
0 in iteration 1. The application of IRMA allows deeper insights into the feature
relevances. For example, Fig. 3 shows that features 25 and 26 display significant
Λjj > 0 in iteration (1), while they appear irrelevant in the unrestricted sys-
tem (0). However, the performance of the two systems is virtually identical with
BAC(1) ≈ BAC(0) (the BACs are estimated based on five random training and
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Fig. 2: Wisconsin data set: Projections after 0th (a), 1st iteration (b), and data
projected onto leading eigenvectors of 0th and 1st iteration, respectively (c).
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Fig. 3: Wisconsin data set: Diagonal of Λ per iteration (i), which is indicated as
i in the upper right corner of each panel. In addition, the obtained BAC w.r.t.
test data are shown. In iteration 3, Λ20,20 is approx. 0.54.

test sets, while the relevance profiles correspond to a single split of the data).
Hence, these features constitute examples of weakly relevant dimensions in the
sense of the discussion given in [6, 7]: they enable successful classification in (1),
but are replaced by other (combinations of) features in (0). Similarly, the single
feature j = 20 with a relevance of 0.54 dominates the classification in iteration
(3), while it plays only a minor role in the other classifiers.

Note that the test set accuracies decrease to BAC(4) ≈ 0.71 and BAC(5) ≈
0.57. Here, we restrict the discussion to V = {v(0)

1 ,v
(1)
1 ,v

(2)
1 ,v

(3)
1 } as the most

discriminative subspace. Two features (j = 9, 18) display diagonal relevances

Λ
(i)
jj < 0.02 for all i ≤ 3 and, therefore, could be considered irrelevant. No

features were rated relevant with Λ
(i)
jj ≥ 0.01 for all i ≤ 3.

4 Conclusion and Outlook

We have shown how IRMA based on GMLVQ with iterative subspace elimina-
tion can be used to find class-relevant subspaces for a two-class classification
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problem. As an example, we have demonstrated that two mutually exclusive
directions provide the same (highest) performance for the Wisconsin data set.
Consequently, feature profiles from each relevant subspace can be taken into ac-
count for the final feature relevance analysis. This should be especially important
for data sets with correlated or multiple weakly relevant features, or problems
where only a small amount of training data is available. The issue of creating a
(weighted) accumulated relevance profile reflecting the importance of a feature
across all relevant subspaces will be addressed in future work. Note that the
results of previous analyses depend strongly on the details of the method and
the considered classifiers, compare e.g. [6] and [7].

Suitable criteria for the termination of the iteration will be the topic of
forthcoming investigations. Similarly, the application of IRMA on multi-class
problems is left as future work. Here, several dominant directions are expected
per iteration, which can be removed simultaneously.

We also suggest that IRMA may be useful when building ensemble classi-
fiers. Note that at each stage of IRMA a different classifier is obtained. In
particular, the respective prototypes are placed in entirely different positions in
feature space. Hence, it is non-trivial to construct a single classifier from the
individual results. In general, the naive application of an LVQ classifier on the
vectors (yµ0 , y

µ
1 , . . . , y

µ
k )

⊤, cf. (5), will simply recover the unrestricted classifier
by identifying y0 as the most discriminative projection. Creating a weighted
ensemble from all models (iterations) that achieve high performance, may result
in a more robust performanc and would be of particular interest in the presence
of subclusters within the classes.
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