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Abstract. In industry 4.0, Machine Learning coupled with sensors mon-
itoring leverages new ways to optimise maintenance strategies. In a pre-
dictive maintenance case, failure diagnoses are an excellent way to prevent
any breakdowns. Up to now, failure diagnoses are focused on the classifi-
cation of only one failure among many (multi-label classification), even if
multiple failures can occur simultaneously. This study proposes an exten-
sion to classify simultaneous failures with the most popular classification
methods such as random forests or artificial neural networks. Validated on
a public predictive maintenance dataset, our methodology achieved classi-
fication with equal or best accuracy compared to multi-label classification.

1 Introduction

With the rise of Industry 4.0, sensors are widely used to monitor various indus-
trial processes, in particular those based on production lines [1]. Scientific and
technological developments allow to perform this monitoring process with the
support of artificial intelligence based algorithms in order to develop adaptive
and optimised maintenance strategies [2]. In the literature, there are three main
types of maintenance: preventive, corrective, and predictive maintenance [3].
The first type (preventive) schedules maintenance operations before any failure;
the second type (corrective) acts after a failure to repair the system’s faulty
components; the third type (predictive) predicts when and where a breakdown
is likely to happen in order to carry out actions to prevent it. Predictive mainte-
nance (hereafter, PdM) allows to reduce costs by avoiding both the replacement
of healthy components and the occurrence of any service disruption by antici-
pating problems. Two main approaches have been identified in the literature to
implement PdM: i) the diagnostic approach to identify the sources of the fail-
ure; and ii) the prognostic approach to forecast the remaining useful life of the
system’s components [4]. By taking a diagnostic approach, our intention is to
provide operators and decision makers with more precise information (i.e., the
source and the name) about the nature of the failure. In a systematic review
of PdM applications [5], the authors state that, in the literature, the most fre-
quently used AI techniques to implement PdM is Random Forest (RF) [3] used
in 33% of the reviewed papers, followed by Artificial Neural Networks (ANN)
used in 27% of the reviewed papers.
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Our methodology is dedicated to diagnose failures with the most frequently
used AI techniques. Up to now, these AI techniques are used in single-label
classification in PdM context. Single-label classification is achieved by assigning
a single failure among all the possible ones [6, 7]. Assuming that a maintenance
process for a given monitored system could be carried out using a limited set of
labels (e.g., no failure, failure A, failure B), single-label classification assigns one
of these labels to any failure event. However, the approach currently employed
in the PdM literature does not take into account the case where two types of
failure occur on the same monitored system at the same time (simultaneous
failure). This is the case in [6] where the authors applied multiple AI techniques
to achieve single-label classification case on a public PdM dataset [8] containing
simultaneous failure. As result, for every timestep affected by two failure, the
label only refers to one failure while the other is ignored. In this paper, we have
quantified the impact of this loss information for the datset in [8], and we found
that up to 11% of the timesteps impacted by a failure are impacted by two failure.
Our methodology aims to study the impact of multi-label classification to solve
the present loss information problem in PdM case. In order to easily compare
the performances of our approach with what already described in the literature,
we replicate and extend the study described in [6] and we also contributing to
the already made research on the public PdM dataset [8].

2 Methodology

A public dataset dedicated to PdM is made available by Microsoft for the Azure
suite using synthetically-generated data [8]. This dataset is composed of 100 ma-
chines used in heavy industry, monitored from 2015-01-01 to 2016-01-01. The
vibration, rotation, pressure and voltage are measured each hour with sensors
placed on each machine. A machine is characterised by its service age (i.e., from
0 to 20 years) and is composed of 4 components. The nature of these compo-
nents is not detailed, but it is assumed that each component can be replaced
if faulty. The dataset includes the corrective and preventive actions operated
to the components. Also, a troubleshoot record includes the type of error (5
errors types are listed) occurred at the machines and the failure/s occurred on
the component/s. Failure implies a service interruption while error does not
compromise the system functionality. Also, a component can be defined with 2
distinct states, faulty or normal (N). Therefore, failures are named according to
which component is faulty (i.e., C1, C2, C3 and C4). In the dataset, each mon-
itoring action, hereafter referred to as timestep, is timestamped. To minimise
the noise on sensor readings performing the monitoring, the following features
are added at each timestep: the time since last maintenance operation on each
component (in hour), the number of errors (and their type) occurred in the last
n hours, the machine service age, a long moving average and standard deviation
of sensors’ data computed over the last n hours, and a short moving average
and standard deviation of sensors’ data computed in the last 3 hours. We have
varied the window length with n ∈ [3h, 6h, 12h, 24h, 36h, 48h, 72h], where n cor-
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responds to the lagging window size (LW). Due to lack of space, in this study
we only show the results for n = 24h and n = 48h.

The classification of the different types of failure is performed using two
different approaches. The first approach, referred to as Random Forest single
failure (hereafter, RF-s), replicates the methodology originally described in [6],
where the authors base their analysis on the assumption that only one failure
can occur per timestep. In this approach, the classification method Random
Forest is used to assign a label to each timestep. As in [6], RF-s is validated
via a grid searching algorithm with a number of estimators sets to 70. Given
that in the considered dataset, 11% of the total timesteps impacted by a fail-
ure are characterised by two distinct types of failure, this approach suffers from
an information loss problem. Thus, in this study we have developed a second
alternative method based on the classification of multiple failures per timestep.
The classification of multiple failures per timestep is accomplished with the fol-
lowing three different approaches: i) Multi Layers Perceptron (hereafter, MLP)
with hidden layers size of 500 and optimised with adam, ii) Logistic Regres-
sion (hereafter, LR) with newton cg solver, and iii) Random Forest multi failure
(hereafter, RF-m) with a number of estimators sets to 70. With LR and MLP,
each timestep is labelled with a 5 bits vector to represent all the possible states
of the components. The first bit indicates with a 0 if there is a failure and with
a 1 if the timestep is normal to avoid confusion between a normal timestep and
a classification error where no label has been assigned. The following bits signal
the state for each component, with 0 indicating no failure, and 1 indicating a
failure for each respective component. In this way, For example, if at timestep t

there is no failure the labelt is [1, 0, 0, 0, 0]. If instead there are failures for compo-
nent 1 and component 3, labelt is [0, 1, 0, 1, 0]. With RF-m, for each timestep of
each component the method outputs 1 if there is a failure, 0 otherwise. Finally,
for every training case, each data related to sensors have been z−normalized
following this equation:

Z =
x− µ

σ
; (1)

with µ indicating the mean, σ the standard deviation and x the value before
normalisation. The labels distribution follows the same behaviour as the lagging
features, and each label is mirrored in the n previous timesteps. The label
distribution is detailed in Table 1.

N C1 C2 C3 C4
Distribution 93.85% 2.31% 1.62% 1.29% 0.94%

Table 1: Label distribution in the dataset

The training set includes the first 8 months of records. The classifiers have
been validated with the following 2 months. Finally, the best classifier has
been tested during the last 2 months. Regarding the evaluation metrics, the
classifiers have been evaluated to determine the number of true positive (TP),
false negative (FN) and false positive (FP). The main evaluation metrics are F1
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score and WSlabel, computed in the following;

F1 = 2× P ×R

(P +R)
; WSlabel = F1 ∗ Olabel

100
;

P =
TP

(TP + FP )
; R =

TP

(TP + FN)
;

(2)

with P indicating precision, and R the recall. O refers to the labels percentage
of occurrence in the dataset which is described in Table 1. F1 refers to the
F1 score giving an weighted accuracy score with respect to precision and recall.
WS is the weighted score added to evaluate the classification accuracy for a
label according to its weight inside the dataset.

3 Results

LW N C1 C2 C3 C4 WS

RF-s
24h 0.9983 0.8909 0.9306 0.9056 0.8985 0.9927
48h 0.9985 0.9126 0.9187 0.9113 0.9235 0.9935

MLP
24h 0.9971 0.814 0.8741 0.8231 0.839 0.9872
48h 0.9964 0.7744 0.8318 0.7581 0.7703 0.9835

LR
24h 0.9938 0.7812 0.8301 0.8489 0.8369 0.983
48h 0.9886 0.5737 0.6933 0.7296 0.718 0.9684

RF-m
24h 0.9987 0.9235 0.9354 0.9003 0.9574 0.9944

48h 0.9985 0.9179 0.9327 0.8904 0.9458 0.9938

Table 2: Classification F1 score across classifiers and LW

The classification F1 scores for every classifier for LW = 24h and LW = 48h
are detailed in Table 2. Regarding the classification accuracy by labels, all the
classifiers detect nearly perfectly the timesteps without failure. This score is
expected since failures rarely occurred in the dataset. Regarding the failure
classification, MLP and LR classify the failures with less accuracy while RF-
s and RF-m achieve the best classification results for all the types of failures,
confirming the trend observed in [9]. LR clearly distinguishes the difference
between a failure and a normal timestep but failed to classify the correct failure
name. The LR scores are particularly low to classify failures due to an higher
sensibility to the label imbalanced. Regarding the LW, n = 48h turns out to be
the best length to classify one failure per timestep. Regardless of the classifier,
n = 24h is the best LW to classify simultaneous failures. It is interesting to note
that classifying the failures earlier with a LW set to n = 48h does not significantly
lower the classification scores and this for all the classifiers. However, the scores
with a LW for n = 24h are slightly higher than those with a LW for n = 48h since
the degradation of the machine is higher. This degradation is highlighted in the
features since the failure probability increase. Also, the classification scores for
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RF-m also demonstrates that it is slightly better to classify simultaneous failures
than single failure since the WS for RF-m is higher than the score achieved by
RF-s.

Label P R F1
N 0.9982 0.9992 0.9987

C1 0.9437 0.9042 0.9235
C2 0.9674 0.9056 0.9354
C3 0.9211 0.8805 0.9003
C4 0.9783 0.9375 0.9574

Table 3: Validation scores of RF-m with LW sets to 24h

The classification scores for the best classifier are detailed in Table 3. RF-m
generally achieved very high P and R scores for every failures. This demonstrates
the robustness and the reliability of the classification with a low false positive
and negative rates. Also, the RF-m classifies, with a very high score, timesteps
without failure from timestep with failures. This result is especially interesting
in PdM context where the false negatives can have a lot of impact in leading to
service interruption.

Finally, the RF-m classification has been tested on the testing dataset con-
taining only timesteps with multiple failures. The aim is to precisely evaluate
its ability to detect simultaneous failures and to weight the number of FP and
TP in the special case of simultaneous failures. As shown in Table 4, RF-m can
classify correctly all failures with a very high level of precision. This results is
even more important in PdM case where FP leads to unnecessary components
replacement. However, RF-m is prone to generate FN even if the R score is still
adequate with a lowest value of 0.88.

Label P R F1
C1 1 0.937 0.968
C2 1 0.877 0.935
C3 1 0.875 0.933
C4 1 0.88 0.9361

Table 4: Validation of RF-m with the testing set

4 Conclusions

In conclusion, our approach demonstrates that is possible to detect all the possi-
ble simulatneous failures that could happen inside a same measurement interval
without losing any information and without any classification performance loss.
Also, the failures can be classified up to 48h before their occurrence, leaving time
for maintenance operators and decision makers to plan the necessary operations
to maintain their system at his best level.
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