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Abstract. Subgraph-enhanced graph neural networks (SGNN) can in-
crease the expressive power of the standard message-passing framework.
This model family represents each graph as a collection of subgraphs, gen-
erally extracted by random sampling or with hand-crafted heuristics. Our
key observation is that by selecting “meaningful” subgraphs, besides im-
proving the expressivity of a GNN; it is also possible to obtain interpretable
results. For this purpose, we introduce a novel framework that jointly pre-
dicts the class of the graph and a set of explanatory sparse subgraphs,
which can be analyzed to understand the decision process of the classifier.
The subgraphs produced by our framework allow to achieve comparable
performance in terms of accuracy, with the additional benefit of providing
explanations.

1 Introduction

Graph neural networks (GNNs) are neural network models designed to adapt
and perform inference on graph domains [1] providing state-of-the-art results in
a comprehensive set of scenarios. Nevertheless, regulations require high task per-
formance and a transparent decision process. For this reason, several researchers
have investigated techniques to explain GNNs’ predictions inferring the reasons
that led to a specific outcome by a trained model [2,3]. However, recent efforts
toward “explainable-by-design” GNNs rather than post-hoc explainers are open-
ing up new, interesting approaches [4,5]. On a separate line of research, recent
studies [6] demonstrated that by providing the GNN with subgraphs that give
different views of the same graph, it is possible to increase the expressive power
of the standard message-passing framework. We propose to connect these two
topics and build an explainable by-design subgraph-enhanced GNN. We use a
data-driven approach to learn small and representative subgraphs that increase
the expressive power for the downstream task and that can be used as explana-
tions.

*This work was partly funded by Sapienza grant RM1221816BD028D6 DESMOS. I. Spinelli
has been fully supported by PNRR MUR project PE0000013-FAIR.

229



ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9.
Available from http://www.i6doc.com/en/.

2 Related Works

2.1 Explainability in GNNs

Explainability techniques enable humans to interpret the decision process of
GNNs, discover potential sources of error, find biases and limitations in the
model and learn more about the data and the task at hand. Most approaches
in the literature are post-hoc explainers differentiated according to the tech-
niques used to explain a trained GNN. In particular, there are gradient-based
approaches [7], perturbation-based approaches [2,3] and decomposition meth-
ods [8]. Meanwhile fewer research efforts have been devoted to explainable-by-
design GNNs [4,5]. Of particular interest for this work is PGExplainer [3],
which uses a small network to parametrize the probability of each edge w;; of
being part of the explanatory subgraph, and samples from this distribution to ob-
tain the final explanation subgraph characterized by edges e;;. The optimization
objective maximizes the mutual information between the masked prediction and
the prediction obtained from the original graph. In addition, an element-wise
entropy term encourages sparsity on w, and an {[1—norm forces small explanation
subgraphs.

2.2 Subgraph-enhanced graph neural networks

The study of the expressive power of GNNs has always been of central interest
to the community. It has recently been shown that it is possible to create more
expressive GNNs using standard architectures that process several subgraphs of
the input graph [6]. In particular, ESAN [6] represents each graph as a bag
of subgraphs {G1,...,Gmn} chosen according to some predefined policy, e.g., all
graphs obtainable by removing one edge (edge deleted strategy) or one node
(node deleted strategy) from the original graph. The encoder implements a
module L, consisting of several message-passing layer that process each subgraph
independently, and then a second message-passing module Ly preprocesses the
aggregation of the subgraphs working as an information-sharing module for the
subgraphs. For example, to compute the embedding H; for the subgraph G;,
they use the following procedure:

H; = L1 (G;) + Lo Zgj . (1)

Then, in the last layer of the encoder, a pooling operation aggregates the node
embeddings into subgraph embeddings with a global pooling operation. Finally,
a set learning module [9] aggregates the obtained subgraph representations into
a single one used in downstream tasks. The authors of [6] name this general
configuration DSS-GNN.

230



ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9.
Available from http://www.i6doc.com/en/.

O
(@]
s (o2 | B s (=)
@) SGNN
O

(@]

1 Backbone %_O/O o
3 N . 3
——> first step @) ggregation
second step :)(3 o)

> third step

Fig. 1: In the first step, we train the backbone of the SGNN, a GIN classifier,
using the original graphs. In the second step, we train the explainer with the
original graph and the backbone’s predictions and use it to create the new rep-
resentation consisting of bags of explanation subgraphs. Finally, in the third
step, we train the whole SGNN framework, fine-tuning the backbone using the
explanatory subgraphs. Our model outputs the predicted label and an explana-
tion obtained by combining all the subgraphs used during training.

3 Proposed Framework

In this work, we consider an undirected and unweighted graph G = (V, £), where
V = {1,...,n} is the set of node indexes, and EC{(7,5) | i,5 € V} is the set of
edges connecting pairs of nodes. The entities and relationships represented by
nodes and edges depend on the data and the application. The graph topology
can be represented by the adjacency matrix A € {0,1}"". Other operators
matching the sparsity pattern of A, such as the graph Laplacian, can be used to
define the weighted connectivity of the graph. Letting D be one of these oper-
ators encoding the topological information, a GNN layer is defined by (ignoring
biases for simplicity, but w.l.o.g.):

H = ¢ (DXW) , (2)

where X € R"*¢ is a matrix collecting all vertex features row-wise, W € R4x4
is a matrix of trainable coefficients, and ¢ is an element-wise non-linear func-
tion (e.g., for ReLU ¢(s) = max (0,s)). A GNN can stack multiple layers in the
form of (2) to learn highly nonlinear node representations that account for larger
neighbourhoods on the graph. In this work, we are interested in graph classifi-
cation tasks. This task requires a global pooling operation, such as mean, max,
or min pooling, to build a graph representation from the node representations
produced by stacking the layers described in Equation (2).

Our goal is to develop a framework that jointly predicts the graph class
and the explanation masks, highlighting the parts of the graph that contribute
the most to the prediction. The key to our framework is the role played by
the subgraphs which are learned end-to-end, based on the optimization of the
classification loss. Firstly, they must improve the expressive power of the base
GNN classifier. Secondly, they must serve as explanation masks by selecting the
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Fig. 2: The collection of subgraphs is represented as a heatmap. On the left,
there are the subgraphs obtained with the noise based strategy. On the right,
those obtained with the progressive top-K selection.

parts of the input that mostly contribute to determine the correct class. We
expect such subgraphs to be more informative than post-hoc explanation masks
since they are directly generated by the model to maximize the classification
performance. We summarize our framework, which consists of three main steps
highlighted in Fig. 1. In the first step, we train the backbone of the SGNN,
which is a classifier that processes the original graph. In the second step we
apply PGExplainer with a minor modification to circumvent the “introduced
evidence” [10] issue due to the presence of soft masks. Specifically, we binarize
the soft weights to create “hard” explanation masks. These modifications lead
to design choices for the regularization terms that are different from those origi-
nally used in PGExplainer. In particular, we apply the regularization directly on
the “hard” explanation mask e instead of w. Therefore we remove the element-
wise entropy term and the {1—norm, in this case, is equivalent to an [0—norm
minimizing the number of edges appearing in the explanation. Furthermore, we
devise two strategies to obtain a heterogeneous yet meaningful set of subgraphs.
The first is to use the reparametrization trick also in the inference phase allow-
ing the noise, which can be tuned as a hyperparameter, to inject diversity that
leads to multiple different subgraphs. In the second approach we introduce a
budget on the explanation. We adapt the binarization threshold to obtain a set
of explanations with K edges, where K ranges from 5% to 75% of the initial
number of edges in the original graph. An example of these two strategies is
presented in Figure 2, on the synthetic dataset BA-2Motifs where the five nodes
cycle is responsible for the prediction. In the third step, we insert the back-
bone GNN into the DSS-GNN model introduced in ESAN in [6]. The backbone
works as the encoder that processes each explanation subgraph independently.
A new message-passing module preprocesses the aggregation of the explanations
working as an information-sharing module for the subgraphs. Finally, a new set
learning module [9] aggregates subgraph representations obtained after a global
pooling operation into a single one used in downstream tasks. Besides being
used by the information-sharing module, the subgraph obtained by aggregating
all the explanations is used to explain the model’s prediction.
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Model | MUTAG NCI1 PROTEINS IMDB-BINARY IMDB-MULTI
GIN 89.4+56 82.7+1.7 76.2 £2.8 75.1£5.1 52.3+2.8
DSSND 1.0 | 89.0+4.4 83.0£2.0 76.5 £ 3.7 75.4+£3.5 52.3£2.9
DSS ND 0.1 | 89.9+2.8 83.1+2.0 76.6 4.7 75.7+£2.3 52.5£2.2
DSSED 1.0 | 89.9+4.3 82.7+£1.7 74.0 £ 4.4 76.7 £ 3.6 52.6 £ 2.6
DSS ED 0.1 | 89.9+5.5 82.1+20 75.1 £4.7 76.4 £2.7 52.6 2.8
OURS 92.1+4.3 829+£23 76.3 £4.4 76.0 £ 3.1 53.5 £ 3.8

Table 1: TUDataset classification accuracy. We report the mean and the stan-
dard deviation obtained by running a 10—fold cross-validation.

4 Experimental Evaluation

We want to prove that our framework retains the same classification performance
of known SGNN architectures. However, our framework has the added benefit
of re-using the subgraphs involved in the computations as plausible explanations
for the model’s prediction. We used the same evaluation proposed in ESAN [6].
We selected GIN [11] and DSS-GNN with the GIN backbone as baselines. We
used the most compact model consisting of 4 GIN layers with two linear layers
of a hidden size of 32. The batch size is also 32. We selected the top performing
policies from [6]: node deleted (ND) and edge deleted (ED). Furthermore, we
consider both their deterministic versions: one that uses the entire bag of sub-
graphs (referred to as “1.0”) and the sampled versions, which keeps only 10% of
the bag (referred to as “0.1”). We report the results in Table 1. We can observe
that subgraph-enhanced GNNs achieve slightly better accuracies and that the re-
sults obtained using explanatory subgraphs instead of randomly generated ones
are comparable. However, the former provides an explanation helping human
experts to extract new knowledge from the model.

5 Conclusion

We introduced a framework to bridge subgraph-enhanced GNNs with explain-
ability techniques. First, we pre-train a base GNN such that we can train a
post-hoc explainer modified to satisfy the need for multiple and discrete expla-
nation masks. Next, the explainer generates a bag of explanation subgraphs.
Then, we resume the training of the base model, including equivariant layers, to
process the new representation in the SGNN fashion. Finally, we combine the
subgraphs in a unique heatmap highlighting the most relevant parts responsible
for the prediction and the prediction itself. This additional information allows
human experts to interpret and extract knowledge from the model. The ex-
perimental evaluation showed that our model achieves comparable classification
performance to state-of-the-art models while providing, at the same time, an
explanation.
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