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Abstract. Machine learning algorithms allow an accurate description
of the anaerobic digestion process, but they are not applied in full-scale
reactors due to the lack of physicochemical reliabilty. A hybrid model
combining biomethane potential (BMP) tests data and a long short-term
memory (LSTM) neural network was developed for providing previous
knowledge to the neural network and improving performances. Results
show that the best model configuration can predict the methane yield with
a 6-hours resolution 1 day in advance with a Root Mean Square Scaled
Error (RMSSE) of 36%, compared to an RMSSE of 41% obtained by the
pure LSTM model configuration.

1 Introduction

Anaerobic Digestion (AD) is a biochemical process that transforms organic mat-
ter into biogas and digestate. AD plants have been commonly used for baseload
power supply, but the changing conditions within the energy sector requires the
development of new concepts. AD processes can potentially provide demand-
oriented power and compensate for the irregularity of renewable energy conver-
sion [1]. The Anaerobic Digestion Model No. 1 (ADM1) [2] is typically used
for AD process modeling, but simplifications have been proposed due to lack
of reliable measurements during regular plant operation [3]. Machine learning
(ML) techniques show great potential for non-linear process prediction [4]. Deep
learning algorithms such as Long Short-Term Memory (LSTM) Neural Networks
(NNs) and Convolutional Neural Networks (CNN) have been recently applied
to predict AD process behavior [5]. While such models perform sufficiently well
for research application, they cannot be applied to industrial application due to
their possible instability during reactor operation.
The current investigation demonstrates that constraining the output of a LSTM
NN trained and tested on industrial-scale data provides accurate results in the
prediction of methane yield. The upper and lower limits of the prediction are
defined depending on the average ratio between the measured methane yield and
the methane yield calculated from Biomethane Potential (BMP) tests data, only
considering the training dataset.
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2 Materials and methods

For implementation of additional information based on BMP tests, the output of
the last neuron of the applied LSTM NN is activated with the hyperbolic tangent
(tanh) function, and then scaled between arbitrary limits (see Section 2.3). The
output value of the NN represents the ratio between the actual methane ratio and
the BMP-estimated methane ratio. A schematic explanation of the procedure is
presented in Figure 1.
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Fig. 1: Hybrid model structure

The choice of the LSTM NN was based on the succesful results of previous
research [6], while the application of BMP tests is considered the state-of-art
estimation of methane potential for AD of organic substrates.

2.1 Process data

For process simulation and validation of implemented optimization procedures,
full-scale experiments for mesophilic AD of corn silage, grass silage, apple pomace
sugar beet and cattle manure were conducted in a single primary digester (total
volume of 188 m3) at the Deutsches Biomasseforschungszentrum full-scale biogas
plant for 5 months. The reactor was fed on average with 4 t of a mixture of
solid and liquid substrate per day, with a highly variable liquid to solid feed
ratio. The dataset consists of 14 operational features with 1-minute resolution,
70 substrate-related features with 1-minute resolution and 10 digestate-related
features with 1-week resolution. The data was resampled to 6-hours resolution.

2.2 Prediction models

For prediction of methane production with a 6-hours resolution at a 24-hours
observation distance, an LSTM NN was developed. The data preparation and
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the hyperparameters of the NN were optimized according to Meola et al. [6].
Additionally, BMP tests carried out at DBFZ on substrates of the same type
were used for estimating the methane yield and limiting the output of the NN.
BMP tests assess the maximum amount of methane that can be produced of a
specific substrate by anaerobic digestion [7]. The model estimating the methane
yield in full-scale considers the specific methane yield from the BMP tests and
the Volatile Solids (VS) fed in full-scale. Equation 1 describes the model output
for each timestep t.

CH4YieldBMP−estimated,t =
E∑
e

CH4YieldBMP,s (t− tin) · V Se (1)

with s being the type of substrate used within event e. A comparison between
the measured methane production at 6-hours resolution and the methane pro-
duction estimated from BMP tests is presented in Fig. 2. The evolution of the
ratio between the two shown quantities is shown below.
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Fig. 2: Measured and BMP-based methane estimates, including ratio.

2.3 Model implementation and configurations

Six different model configurations were considered, presented in Table 1. The
configurations from A to E include BMP data, while configuration 0 does not
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include any BMP data.

Conf.
name

tanh
limits

Min.
delta
Adama

NN
Epochs

Calculation of
tanh limitsb

BMP
corrc

Extra input
featuresd

A Mean, std 0.05 400 Train data no no
B 1.2; 0.6 0.01 250 - no no
C Mean, std 0.001 300 Train data no no
D Mean, std 0.005 300 Train data

from day 19
+1 day CH4

YieldBMP -estimates

E Mean, std 0.05 400 Train data +1 day CH4
YieldBMP -estimates

0 - 0.05 600 - - -
a Early stopping parameter for the Adaptive Moment Estimation (Adam) NN optimizer
b Which data is used for the calculation of the limits of the pseudo-tanh function
c Methane estimates from BMP tests can be retarded in time for a better fit
d Features can be added to the raw dataset as input features

Table 1: Model configurations

As introduced in Section 2, the output of the LSTM NN is limited to a
pseudo-tanh function, resulting from the scaling of the tanh activation function
of the last neuron of the network. While in configuration B the scaling limits are
fixed to 1.2 and 0.6, in all the other scenarios including BMP data the scaling
limits are calculated as per Equation 2 from the training data.

maxtanh = mean (ratioreal) + 2 ∗ std (ratioreal)
mintanh = mean (ratioreal )− 2 ∗ std (ratioreal)

(2)

with

ratio real =
CH4 Yield measured

CH4 Yield BMP−estimated

3 Results and discussion

The optimization pipeline [6] was run until the 2000 valid simulations were
reached. Previous results show that prediction accuracy of methane yield in
full-scale does not improve beyond 2000 simulations.

3.1 Optimization process results

Figure 3 shows the progression of the prediction accuracy during the optimiza-
tion process. Each step involves the training and validation of the neural network
for the set number of epochs (including eventually early stopping). Figure 3A
represents the change in error for the validation data, and Figure 3B represents
the progression of test error taking into consideration an error decrease in the
test data only if corresponding to an error decrease in validation data. This
allows a better evaluation of the robustness of the configurations.

While results from train and test dataset show that Configuration A outper-
forms the other configurations, Figure 3B demonstrates that Configuration E
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A B

Fig. 3: Optimization process of the tested configurations

performs better when considering only validation dataset error improvements.
The baseline (Configuration 0) is outperformed by both Configurations A and
E, while outperforms the remaining ones. Root Mean Squared Scaled Error
(RMSSE) of the optimized model configurations A, B, C, D, E and 0 are 36, 49,
40, 72, 38 and 41 %, respectively.

3.2 Optimized results of best performing configurations

Optimized results of Configurations A and E are presented in Figure 4. Config-
uration 0 is furthermore shown for comparison.

Validation dataset Test dataset

Fig. 4: Simulation results of individual model configurations

Prediction results show that all the configurations can satisfactorily predict

547

ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9. 
Available from http://www.i6doc.com/en/.



the methane yield, with configuration A performing better than the others.
While BMP-based models are not able to predict the peak on day 7, neither
is the model in Configuration 0, demonstrating that the used upper limit for the
pseudo-tanh activation function in the BMP-based models is adequate.

4 Conclusions

A hybrid model consisting of an LSTM NN conditioned by BMP test measure-
ments was successfully developed and tested on full-scale AD data. Results
demonstrate that BMP-based hybrid models outperform standard LSTM NNs,
particularly when BMP data is used to set the output limits of the neural net-
work. The most robust configuration includes a minimum delta of 0.05 for the
NN optimizer, 400 epochs and BMP-derived methane yield as an input feature.
Additionally, the model accounts for a time lag of 24 hours between BMP-derived
methane yield measurements and the corresponding real-time data. The best
performing model in the test dataset showed an RMSSE error of 36% for the pre-
diction of methane yield with a resolution of 6 hours and an observation distance
of 24 hours. Performances could be further improved by including individual
hyperparameters (tanh limits, minimum delta of Adam optimizer, time-delay in
the BMP-estimated methane production) in the numerical optimization routine
and using reliable BMP data of the specific substrates that were used in the
particular experiment.
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