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Abstract. Multi-label classification problems, where more than one class
can be active in a single instance, generalize the conventional single-label
cases. In this article, we continue the research track documented in [1, 2],
where the Minimal Learning Machine (MLM) was generalized into multi-
label problems with competitive results compared to other state-of-the-art
techniques. Our current interest is to consider whether we can reduce the
complexity of the distance-based regression model in the MLM by per-
forming feature selection. For this purpose, an existing feature selection
filter technique is generalized to multi-label problems. Experimental re-
sults confirm that the proposed technique provides a useful ranking, which
allows one to reduce the number of active features without jeopardizing
the quality of the multi-label MLM classifier.

1 Introduction

In the multi-label classification (MLC) problems, the restriction of a single active
class is relaxed to consider multiple active labels, which can be represented as a
bipartition of the labels into relevant and irrelevant ones for each instance. The
popularity of the MLC research field has been steadily increasing [2], and many
methods and algorithms have been proposed over the years [3]. In principle, the
MLC techniques can be divided into problem transformation (PT) and algorithm
adaptation (AA) methods, where the MLC problem is transformed to a set of
single-label problem(s) with PT and a direct modification of a learning algorithm
is performed in AA [4]. The AA methods can be further categorized as first-
(label-by-label style), second- (pairwise relations between labels), or higher-order
(more complex linkages like one-to-many relations between labels) methods [5].

The minimal learning machine (MLM) is a supervised machine learning
method that integrates the construction of a distance-regression model with
a multilateration step to estimate the output from a set of predicted distances
[6, 7]. Its extension to multi-label (ML) problems, ML-MLM, was preliminary
proposed in ESANN 2021 [1] and, more recently, generalized and thoroughly
experimented in [2]. In essence, the ML-MLM uses inverse distance weighting
[8] to modify the second step of the basic MLM in order to establish a ranking
of the predicted output labels with a threshold to identify the active ones. Ex-
perimental comparisons in [2] to a random forest-based ML method [9], which

∗This work was supported by the Academy of Finland through the grant 351579. We
acknowledge the work of Marko Niemelä regarding the nanclustering toolbox.
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has been one the best-performing methods in extensive experimental evaluations
like [3], concluded highly competitive performance of the ML-MLM.

Feature Selection (FS) refers to the identification and use of only a subset of
the original features in the construction of a supervised model. Various sugges-
tions for the multi-label FS were reviewed in [2, Section 2.1] and in [10, Section
2.6]. In general, FS is a search problem, and many FS algorithms perform an
iterative identification of a reduced set of features (see the umbrella review on FS
in [10, Section 2]). However, the filter FS techniques, which are independent of
the predictive model, may provide direct scoring and ranking of the features with
higher computational efficiency compared to the model-specific wrappers [10]. In
this paper, we follow this line of development by augmenting the Kruskal-Wallis
(KW) test statistics-based scoring of features [11, 12, 13] with a clustered multi-
label output data. Use of clustering, which utilizes the toolbox from [14], is one
way to perform a problem transformation of MLC to a single-label case, but
here it is not used on the whole problem level but only to enable the application
of the KW-based FS filter with the ML-MLM.

2 Methods

Define the set of instances as X = {xi}Ni=1, where N = |X| and xi ∈ RM . Let
Y = {yi}Ni=1 be the set of label vectors so that yi ∈ {0, 1}L, where yi(j) = 1
associates that an instance xi belongs to a class j.

The ML-MLM’s [2] training phase applies the ordinary least squares (OLS)
formulation to construct a distance mapping B between the input and the label
space distance matrices Dx and Dy. This solution is given by B = (Dx

TDx +

αI)−1Dx
TDy, where Dx is N ×K matrix which holds distances between X and

the input space reference points R ⊂ X [7], Dy is N × N full distance matrix
of Y, and α is a small positive constant. In the ML-MLM’s prediction phase,
the label space distance estimates [ρ1, ..., ρN ] for a new instance x∗ are given by
[ ∥x∗ − r1∥, ..., ∥x∗ − rK∥]B, where ri refers to the reference point from R. A

scoring of the labels is then given by
∑N

i=1 wiyi, where wi = ρ−P
i /

∑N
i=1 ρ

−P
i

when ρi > 0, and, wi = 1/
∑N

i=1 ρ
−P
i when ρi = 0. The power parameter

P > 0 is selected based on the ranking loss statistic. Finally, for the selected
power parameter value, the bipartition of the relevant and irrelevant labels is
thresholded with the t > 0 parameter, which is selected by matching the out-of-
sample label cardinality to the training set label cardinality.

In the basic ML-MLM, the input distance matrix Dx is computed using all
features. However, a separability score of features with single-label labeling can
be computed using the Kruskal-Wallis (KW) test [12, 13]. Hence, in order to
generate a single-label approximation (categorization) of the multi-label output
data, we apply the iterative kcentroids clustering algorithm with the Cityblock-
distance and the Silhouette cluster validation index [15], otherwise using the
default settings of the toolbox [14]. The search interval for the number of clusters
C ranged from 2 to min(50, Yuniq−1), where Yuniq denotes the number of unique
observations in Y . We used Yuniq−1 to ensure that some clustering error always
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Fig. 1: Silhouette index for two datasets

remained after the labeling. The data-specific C was determined by the smallest
value of the Silhouette index. Examples for the determination of the number
of clusters using the Silhouette index are presented in Figure 1 for datasets
COREL5K and BIBTEX. As can be seen from Figure 1, the number of clusters
for COREL5K was 50 clusters since the minima was found at the end, whereas
for BIBTEX, the minima was found at 13 clusters.

The labels from clustering were used to score the features using the test
statistics value of the Kruskal-Wallis H-test [11, 12, 13]. These values served
as the ranking values of the Feature Importance Detector (FID) [16], which
performed the actual feature selection (see Figure 2 for functionality illustration).
Two cutoff values for the FID algorithms, 0.1 and 0.01, were selected for the
experiments based on the experiments in [16].

3 Experiments and results

The experiments were conducted using Matlab by integrating and extending
the existing methods and their implementations presented in [2, 14, 16] (links
to Github-repositories are given in the corresponding reference entries). We
evaluated the proposed method with two bipartition-based metrics, Accuracy
(ACC) and Hamming Loss (HL), and two ranking-based metrics, Ranking Loss
(RL) and Coverage (Cov) [2, 3]. In addition to these MLC metrics, we evaluated
the effect of feature selection on the model complexity by assessing the relative
change of the number of features (fN).

A set of MLC datasets that were previously used in [2] were used in the
experiments. The used datasets are presented in Table 1 and were obtained
from [17]. We removed duplicate observations and constant features and scaled
the data to a range of [0, 1] using MinMax-scaling.

The ML-MLM [2] was studied by comparing the baseline metrics to the values
obtained after the proposed feature selection method. An example illustration
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Dataset N Ntst M L C Dataset N Ntst M L C

1. MEDICAL 333 645 1449 45 50 5. YEAST 1500 917 103 14 50
2. EMOTIONS 391 202 72 6 25 6. COREL5K 4500 500 499 374 50
3. ENRON 1123 579 1001 53 50 7. BIBTEX 4880 2515 1836 159 13
4. SCENE 1211 1196 294 6 13 8. TMC2007 21519 7077 500 22 50

Table 1: Dataset characteristics. N and Ntst are the number of observations in
the training set and in the test set, respectively. M is the number of features,
L is the number of outputs, and C is the number of clusters used to cluster the
output.
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Fig. 2: An illustration of the function of the FID for dataset TMC2007 with
cutoff value 0.1. See the expanded illustration in [16].

of how the FID selects features is presented in Figure 2 for one of the datasets.
The results for cutoff values 0.1 and 0.01 are presented in Table 2. The baseline
vs. the feature selected results are presented using the four metrics and the
number of features fN in the corresponding columns of Table 2. Each dataset
is presented with the baseline values (BL), feature selected values (FS), and the
difference between the two (Diff). The sign of Diff is set with the assumption
that the difference is a positive number if the metric has been improved after
the feature selection. The number is negative when the feature selection does
not improve upon the baseline value. In the case of the feature number column,
fN, the Diff-section is the ratio of the selected features to the original features.

Information regarding the used datasets can be gleaned from the results pre-
sented in Table 2. Altogether the proposed feature scoring, ranking, and selection
technique showed very promising results. For majority of the datasets (MEDI-
CAL, EMOTIONS, YEAST, BIBTEX, TMC2007), we were able to reduce the
number of active features by 20%-60% and still maintain the same result quality
than for the baseline with all features. With these datasets, the more instances
we seem to have the more features we can drop without sacrificing quality. For
two of the datasets (ENRON and SCENE), it was necessary to use the smaller
cutoff value 0.01 to again end up with the similar result quality than with the
baseline with all features. And this selection also yielded to a significant reduc-
tion on the number of features. For ENRON, apparently, one could have tested
even a smaller cutoff value. Finally, for COREL5K, we obtained almost equal
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c cutoff = 0.1 cutoff = 0.01
Set ACC HL RL Cov fN ACC HL RL Cov fN

1
BL 0.766 0.015 0.026 1.415 894 0.766 0.015 0.026 1.415 894
FS 0.765 0.015 0.027 1.444 707 0.766 0.015 0.026 1.417 873
Diff -0.002 0.000 -0.001 -0.028 0.79 -0.001 -0.000 -0.000 -0.002 0.98

2
BL 0.604 0.191 0.139 1.733 72 0.604 0.191 0.139 1.733 72
FS 0.601 0.189 0.137 1.738 59 0.601 0.191 0.142 1.738 70
Diff -0.002 0.002 0.002 -0.005 0.82 -0.002 -0.001 -0.002 -0.005 0.97

3
BL 0.404 0.046 0.122 203.806 642 0.404 0.046 0.122 203.806 642
FS 0.231 0.061 0.159 236.425 72 0.356 0.049 0.126 207.016 373
Diff -0.174 -0.016 -0.037 -32.619 0.11 -0.048 -0.004 -0.004 -3.210 0.58

4
BL 0.768 0.082 0.063 0.418 294 0.768 0.082 0.063 0.418 294
FS 0.587 0.142 0.129 0.755 49 0.743 0.089 0.073 0.463 202
Diff -0.181 -0.060 -0.066 -0.337 0.17 -0.025 -0.008 -0.009 -0.045 0.69

5
BL 0.573 0.194 0.165 5.985 103 0.573 0.194 0.165 5.985 103
FS 0.566 0.198 0.169 6.069 59 0.568 0.196 0.166 6.021 96
Diff -0.007 -0.004 -0.004 -0.084 0.57 -0.005 -0.003 -0.001 -0.036 0.93

6
BL 0.199 0.014 0.115 99.743 499 0.199 0.014 0.115 99.743 499
FS 0.191 0.014 0.122 106.016 180 0.195 0.014 0.116 100.705 429
Diff -0.008 -0.000 -0.007 -6.273 0.36 -0.004 -0.000 -0.001 -0.962 0.86

7
BL 0.407 0.018 0.084 25.640 1836 0.407 0.018 0.084 25.640 1836
FS 0.397 0.018 0.088 26.465 888 0.406 0.019 0.083 25.590 1673
Diff -0.010 0.000 -0.004 -0.825 0.48 -0.000 -0.000 0.000 0.050 0.91

8
BL 0.994 0.001 0.000 1.207 500 0.994 0.001 0.000 1.207 500
FS 0.992 0.001 0.000 1.211 263 0.995 0.001 0.000 1.207 462
Diff -0.003 -0.000 -0.000 -0.004 0.53 0.000 0.000 -0.000 -0.000 0.92

Table 2: Results

quality: visible increase in coverage means that we needed slightly more top-
scored predicted labels to ensure a ground truth label with the reduced feature
model compared to the baseline full-feature model.

4 Conclusions

In this paper, we studied the application of feature selection for the ML-MLM
in the context of multi-label classification. We performed feature selection by
integrating the use of Kruskal-Wallis test statistics, clustering-based single-label
generation, and the Feature Importance Detector (FID) with two different cutoff
values, 0.1 and 0.01. For all of the tested datasets, this feature selection strategy
was able to reduce the number of features for the multi-label classifier without
losing performance in multi-label ranking or classification.

Based on the results, the proposed approach can provide feasible feature
importance scoring for multi-label classifiers. However, a varying performance
regarding different FID cutoff values suggests that for keeping the classification
performance on the same level as the full feature model, the thresholding of
the proposed metalabeling-based scoring requires more thorough tailoring. For
instance, the behaviour of the curve fit in Figure 2 suggests that the FID would
benefit from normalization.

For the future work, another approach would be to leverage the single-label
clustering based feature importance scoring as weights for the features in the ML-
MLM to improve its classification performance. The ML-MLM uses a similar
approach with inverse distance weighting for the label vector weighting, where
the full training label data contributes to the final label scoring with varying
contributions.

The feature selection algorithm, FID, was originally used with the Mean
Absolute Sensitivity (MAS) -based feature scoring [10], which was applied as
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wrapper for regression datasets. FID is quite dependent on the feature scoring,
which brings the question of how the results would have changed with another
scoring method. It is something to be further tested.
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