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Abstract. We introduce an efficient approach for supervised land-
mark selection in sparse Nyström approximation of kernel matrices. Our
method converts structured non-vectorial input data such as graphs or
text into a vectorial dissimilarity representation, enabling class-informed
landmark identification through prototype-based learning. Experimen-
tal results show competitive approximation quality compared to existing
strategies and demonstrate the positive effect of integrating class informa-
tion into the selection process of Nyström landmarks making our approach
an efficient and versatile solution for large-scale kernel learning.

1 Introduction

Kernel methods have gained widespread popularity in the field of machine learn-
ing due to their ability to handle a variety of structured data types, such as
graphs, time series, and text documents [3, 5, 8]. Essential for these methods is
the computation of kernel matrices, which contain the pairwise similarities be-
tween all N data points in an implicit high-dimensional feature space. However,
the computational complexity of calculating all pairwise comparisons is OpN2q,
making a calculation of the complete kernel matrix computationally prohibitive.

A widely adopted technique for this bottleneck is the Nyström approxima-
tion [18], drastically reducing the computational costs by requiring only a small
subset of so-called landmark points to create a kernel matrix. A crucial step
in this technique is the selection of those landmarks that reflect the data in-
formation appropriately. Therefore, various strategies have been proposed in
the past [2,10,12,18]. Although these methods identify high-quality landmarks,
accurately representing the data space, they completely ignore the overall task,
namely the classification or regression problem in general. We overcome this lim-
itation by a landmark selection strategy, incorporating label information during
the landmark determination process.
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We start with some concepts of Nyström matrix approximation, data embed-
dings, and supervised prototype learning, before detailing our proposed method.
Subsequently, we evaluate our method’s performance on several datasets com-
pared to other landmark selection strategies and discuss the experimental results.

2 Basic Notation and Related Work

Kernel approximation via Nyström: Let Ξ “ tξ1, ξ2, . . . , ξNu be a set of N
objects, and let K be the N ˆ N kernel matrix with entries Ki,j given by the
kernel function kpξi, ξjq. Yet, a major challenge in the field of kernel methods
is the overall computational complexity of OpN2q when the entire kernel matrix
has to be calculated. Over the last decades, the Nyström method [18] has proven
to be a highly efficient technique to approximate the kernel matrix K using only
a subset of L landmark points, with L ! N . Here, an approximated matrix K̃ is
derived by K « CW´1CT , where C P RNˆL is the matrix containing the kernel
values between all data and the landmark points, and the matrixW P RLˆL con-
tains the kernel function’s results between the landmark points. Consequently,
the Nyström method offers a substantial reduction in computational load requir-
ing only N ˆL kernel function evaluations to calculate the entire kernel matrix.
In general, a key factor for the method’s approximation quality is a careful se-
lection of the landmarks, as their ability to accurately represent the data space
is of great importance. For this purpose, several landmark selection strategies
have been suggested like random sampling [18], which is computationally in-
expensive but may not be appropriate for sparse data regions, or non-uniform
selection techniques such as leverage score-based sampling [12], clustering strate-
gies [19] and various others [2, 4]. While all these techniques exhibit potential,
their applicability is limited either due to quadratic computational costs or the
input’s structured form. One of the few methods achieving an efficient selection
of proper landmarks is based on k-means++ in a n-dimensional dissimilarity
representation space (see below). The overall complexity is the sum of OpN ¨ nq

for the mapping, OpN ¨ L ¨ nq for k-means++, and OpN ¨ L2 ` L3q for the final
Nyström method [10]. However, since k-means++ conducts entirely unsuper-
vised clustering like all aforementioned strategies as well, no further class or
label information is incorporated into the landmark selection process.

Data representation via dissimilarity space: The dissimilarity repre-
sentation (DR) introduced by [11] is an intuitive approach for making standard
vector-based machine learning methods applicable to structured data. Given
a set of such (non-vectorial) data objects Ξ “ tξ1, . . . , ξNu with dissimilarity
measure d, e.g. the distance dkpξi, ξjq “

a

kpξi, ξiq ´ 2Re pkpξi, ξjqq ` kpξj , ξjq

obtained from a task- and data-type-specific kernel k. Then, a data object can
be embedded into an n-dimensional vector space by cumulating its dissimilarities
to a small subset of so-called references, R “ t r1, . . . , rn u Ă Ξ with n ! N such

that the object ξi is represented by xi “
`

dkpξi, r1q, . . . , dkpξi, rnq
˘T

. Selection
strategies for the rk P R should minimize the effort in potentially complex prox-
imity calculations, between the structured data [1], with random selection as a
reasonable starting point [17].

Classification via learning vector quantization: Generalized learning
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vector quantization (GLVQ) [13] is a cost-function-based variant of LVQ consti-
tuting an interpretable classification model, optimizing the hypothesis margin

for class decision. Given data vectors x P X “ txi u
N
i“1 Ď Rn together with

their class labels cpxq P C, GLVQ aims to find an optimal placement of class-

dependent prototype vectors w P twj u
L
j“1 Ă Rn with cpwq P C such that

misclassification of data by means of the nearest prototype principle, cpwspxqq

with spxq “ argminj
`

dpx,wjq
˘

, is minimized. The prototype update realizes an
attraction-repelling scheme (ARS), i.e. a vector shift towards or away from train-
ing data depending on their class label agreement. However, due to the integral
repelling term, care should be taken with the interpretation of the prototypes [9]:
these may be “pushed” far outside of the data distribution, making them highly
data-untypical (non-representative), but rather class-discriminative. Nonethe-
less, LVQ variants enjoy popularity due to their simplicity and low complexity
(O pN ¨ L ¨ nq for GLVQ).

3 Class-informed Landmark Selection for Nyström

In this section, we introduce an alternative landmark selection strategy, enabling
the integration of class information given by an LVQ classifier. This might be
particularly beneficial when considering only a small amount of landmarks, i.e.
1 ´ 10% of the original input data: selection schemes solely based on data den-
sity may yield non-optimal landmarks w.r.t. the later classification, particularly
in case of severely overlapping class distributions [7]. In contrast, the scheme
proposed below results in an approximated kernel matrix that is adjusted, i.e.
customized to the particular classification task to be solved. Hence, the approx-
imation is not necessarily optimal for a general class-independent data represen-
tation but instead constitutes a kind of metric learning [6]. Yet, learning-based
class-informed landmark selection in the non-vectorial data space is generally
too costly because respective models require the full data dissimilarity matrix,
which contradicts the objective of the Nyström approximation. A promising
alternative is an Euclidean data embedding such that optimal landmarks can be
obtained from a prototype-based classification model in this embedding space
by an appropriate reverse mapping.

For the realisation of this overall strategy, first, we adopt the dissimilar-
ity space representation (see Sec. 2) for embedding as suggested by [10, 11]:

The non-vectorial data are represented by X “ txi u
N
i“1 Ď Rn based on

an appropriate kernel. We consider L class dependent prototypes wj P Rn

such that each class is covered and optimize them via GLVQ (see Sec. 2).
Subsequently, landmark determination is done by reverse mapping realized as
spwjq “ argmini“1,...,N

`

dEpxi,wjq
˘

P t 1, . . . , N u to obtain the class-informed
landmarks lj “ ξspwjq P Ξ, which finally are used in the Nyström approxima-

tion.1 Alg. 1 summarizes this procedure.

1A note of caution: The concepts of references, prototypes and landmarks should be clearly
distinguished: references determine a new representation of structured data in a vector space,
prototypes define the decision boundary in classification settings in this representation space
and landmarks correspond to structured objects facilitating the kernel matrix approximation.
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Algorithm 1 Supervised landmark selection for kernel matrix approximation

Input: Data Ξ “ tξ1, . . . , ξNu with class labels, number of references n, number
of landmarks L

Output: Approximated kernel matrix K̃ with kij “ kpξi, ξjq

1: Randomly select n ! N data ξj P Ξ serving as references r1, . . . , rn
2: Map all data ξi P Ξ to the dissimilarity space by means of

xi “
`

dkpξi, r1q, . . . , dkpξi, rnq
˘T

P X Ă Rn Ź DR
3: Train GLVQ on X with L prototypes wj Ź GLVQ
4: For all learned prototypes wj identify their nearest data point with index

spwjq “ argmini“1,...,N

`

dEpxi,wjq
˘

P t 1, . . . , N u

5: Consider the lj “ ξspwjq P Ξ as final class-sensitive landmarks l1, . . . , lL

6: Approximate the kernel matrix via Nyström K̃ « CW´1CT with C P RNˆL

and W P RLˆL Ź Nyström

Finally, the class-adjusted kernel approximation serves as an input for a
(linear) support vector machine (SVM) with fast convergence because of con-
vexity and proved classification robustness due to maximum class-separation
margin [15]. We remark that this class-informed landmark determination has
the same complexity as the approach proposed by [10] due to equivalent com-
plexities of GLVQ and k-means++.

4 Experiments and Results

In order to show the superiority of our class-informed landmark selection, we
evaluate our approach against other fast sampling strategies, namely random
sampling and kernel k-means sampling. Our proposed approach proves to be es-
pecially beneficial when employing a minimal proportion of landmarks (1´ 10%
of the original data size), as demonstrated by the evaluation of various well-
established structured data sets. We evaluated our approach on three data sets
AIDS, MSRC 21C (MSRC), and NCI1 using the Weisfeiler-Lehman kernel from
the GraKeL library [16], as a state-of-the-art kernel in graph representations.
Additionally, our experimental setup includes indefinite kernel data sets [14]:
Flowcyto (normalized histograms), Music (earth movers distance), and Sonatas
(normalized compression distance). To quantify the quality of matrix approxi-
mations, we use classification accuracy and relative error as suggested in [2].

Classification performance: As in this paper an optimal approximation
for classification problems is prioritized, we first evaluate approximation quality
through classification performance. Therefore, we evaluate the performance of
an SVM trained on the approximated kernel matrix of the aforementioned data
sets in a ten-fold cross-validation with nested cross-validation for parameter opti-
mization. Due to numerical issues, we employed an eigenvalue shift for indefinite
kernel matrices [2] when reconstructing the approximated matrix. Table 1 com-
pares the SVM accuracy (mean accuracy over ten-fold cross-validation) of our
approach with random sampling and kernel k-means.

In general, our approach shows an improved landmark sampling compared
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Dataset Random k-means GLVQ

AIDS 1.0 1.0 0.99
MSRC 0.58 0.6 0.81
NCI1 0.59 0.53 0.57
Flowcyto 0.67 0.68 0.69
Music 0.56 0.56 0.62
Sonatas 0.79 0.79 0.84

Table 1: Mean classification accu-
racy using only 1% of the data for
Nyström landmark selection.

2 4 6 8 10
low rank percentage

0.55

0.60

0.65

0.70

0.75

0.80

cla
ss

ifi
ca

tio
n 

ac
cu

ra
cy

GLVQ
Random Sampling
K-means

Fig. 1: Classification accuracy as a
function of the number of landmarks
(high to low) for Flowcyto dataset.

to random sampling and kernel k-means, particularly for MSRC, Music, and
Sonatas datasets. For AIDS and NCI1, the performance of our strategy was
slightly below, for Flowcyto it was slightly above the competitive methods show-
ing nearly equal performance. In Fig. 1, we show exemplary for the Flowcyto
data set the stable accuracy of our approach compared to the other sampling
strategies over a varying amount of used landmarks for matrix reconstruction.

Relative error: Additionally, we evaluate the approximation’s quality by
means of the relative error between original and reconstructed kernel matrix in
Table 2. The relative error is defined as ||K̃´K||F {||K||F measuring the relative

difference of K and K̃ using the Frobenius norm.

Dataset Random k-means GLVQ

AIDS 0.055 0.041 0.141
MSRC 0.541 0.585 0.503
NCI1 0.019 0.016 0.024
Flowcyto 0.405 0.351 0.377
Music 0.847 0.968 0.858
Sonatas 0.795 0.817 0.760

Table 2: Relative error between
original and approximated matrix
(by means of Frobenius norm).
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Fig. 2: Relative matrix approxima-
tion error as a function of the num-
ber of landmarks.

As expected, the relative error experiments show that our approach does not
necessarily provide the best approximation in terms of a general data represen-
tation since it is tailored towards classification tasks. However, for MSRC and
Sonatas datasets, our approach still manages to produce a superior or compa-
rable approximation, as indicated by the lower relative error values. This is an
expected behaviour since GLVQ landmark selection is class specific and does not
focus on an optimal representation of the entire data space. In summary, our
approach offers superior classification performance and competitive approxima-
tion error compared to other methods over various data sets, yielding an efficient
supervised solution for large-scale, structured data challenges.
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5 Conclusions

In this paper, we introduced a novel landmark selection strategy for Nyström
approximation that integrates label information into the selection process by
means of prototype-based learning models. The experiments demonstrated the
effectiveness of our method in approximating kernel matrices and its applicabil-
ity to various structured data types with psd or non-psd kernel functions. In
future work, we will apply our approach to a larger variety of data sets and
analyze elaborated supervised prototype-based models to improve the overall
performance and reduce the required landmarks in matrix approximation.

References

[1] K. S. Bohnsack, A. Engelsberger, M. Kaden, and T. Villmann. Efficient representation
of biochemical structures for supervised and unsupervised machine learning models using
multi-sensoric embeddings. In Proc. of the 16th Int. Joint Conf. on Biom. Eng. Sys. and
Techn. - Vol. 3: BIOINFORMATICS, pages 59–69, 2023.

[2] D. Cai, J. Nagy, and Y. Xi. Fast deterministic approximation of symmetric indefinite
kernel matrices with high dimensional datasets. SIAM SIMAX, 43(2):1003–1028, 2022.

[3] H. Chen, F. Tang, P. Tiño, and X. Yao. Model-based kernel for efficient time series
analysis. In KDD, pages 392–400. ACM, 2013.

[4] M. Fanuel, J. Schreurs, and J. A. K. Suykens. Diversity sampling is an implicit regular-
ization for kernel methods. SIAM J. Math. Data Sci., 3(1):280–297, 2021.

[5] M. Farhan, J. Tariq, A. Zaman, M. Shabbir, and I. Khan. Efficient approximation algo-
rithms for strings kernel based sequence classification. In I. Guyon, editor, Proc. of the
30th NIPS 2017, pages 6935–6945, 2017.

[6] A. Globerson and S. Roweis. Metric learning by collapsing classes. In Adv. in Neural Inf.
Proc. Sys., volume 18. MIT Press, 2005.

[7] T. Kohonen. Self-Organizing Maps, volume 30 of Springer Series in Information Sciences.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1997.

[8] N. M. Kriege, Fredrik D. Johansson, and Christopher Morris. A survey on graph kernels.
Applied Network Science, 5(1):6, 1 2020.

[9] K. L. Oehler and R. M. Gray. Combining image classification and image compression
using vector quantization. IEEE TPAMI, 17(5):461–473, 1995.
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