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Abstract. Effective image post-processing algorithms are vital for the
successful direct imaging of exoplanets. Existing algorithms use techniques
based on a low-rank approximation to separate the rotating planet signal
from the quasi-static speckles. In this paper, we present a novel approach
that iteratively finds the planet’s flux and the low-rank approximation
of quasi-static signals, strengthening the existing model based on low-
rank approximations. We implement the algorithm with two different
norms and test it on data, showing improvement over classical low-rank
approaches. Our results highlight the benefits of iterative refinement of
low-rank approximation to enhance planet detection.

1 Introduction

Although significant progress has been made in the field of high-contrast imag-
ing (HCI), including overcoming image degradation caused by the Earth’s at-
mosphere utilizing techniques such as adaptive optics used during observations,
only around 1% of the discovered planets have been imaged directly [1]. Dedi-
cated HCI instruments, such as VLT/SPHERE, images of which we use to test
algorithms presented in this work, also utilize state-of-the-art coronagraphs to
block out the starlight and reduce the contrast between a host star and planet [2].
Despite advances in imaging technology, the noises called speckles, which occur
in the images because of the imperfections within the telescope and instrument,
as well as atmospheric turbulence [3], resemble the signal of the exoplanet in
terms of shape and contrast. Therefore, post-processing algorithms are needed
to distinguish planets from speckles.

Different observing strategies, such as angular differential imaging (ADI) [4],
have been proposed to help algorithms separate the exoplanets from the speckles.
This approach relies on data gathered through pupil tracking, where the star
remains fixed at the center of the images while the Earth rotates during a night.
This causes the exoplanet to appear to orbit around its host star over time,
while the star and speckles are quasi-static in the images. The ADI technique
aims to create a reference point spread function (PSF) that mimics the quasi-
static speckle noise in the images. This model of quasi-static speckle noise is
then subtracted from the image, the residual is then derotated and combined to
enhance the potential exoplanet signal.

A considerable amount of ADI studies aim to solve this problem using low-
rank approximation. The widely adopted technique for background subtraction
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relies on a low-rank matrix model based on PCA [5, 6]. A variation known as An-
nular PCA [7, 8] considers only a selected set of pixels within a specified annulus.
In these methods, the residual of the least-squares problem captures the rotat-
ing planet signal, while the low-rank component accounts for the quasi-static
speckles. Building upon this, the LLSG method [9] extends the model by incor-
porating a sparse matrix term to enhance the accuracy of rotating planet signal
capture. The sparse term has been further refined with a trajectory specified
by the LRPT method [10]. Recently, a novel approach utilizing an ℓ1 norm for
low-rank approximation has been proposed [11]. Another approach, the Regime-
switching model [12], combines multiple advantages of low-rank approximation
based PSF subtraction techniques.

In this work, we propose a new method, dubbed Alternating Minimization
Algorithm with Trajectory (AMAT), that makes a more advanced use of the
low-rank-plus-trajectory model by alternating between computing the low-rank
approximation of the speckle field and the planet flux. We pose our model as
ℓ1 and ℓ2 norm minimization problems. Numerical experiments performed on
dataset VLT/SPHERE-IRDIS 51 Eri show the potential of AMAT to improve
upon the existing approaches in terms of more clear detections and receiver
operating characteristic (ROC) curves.

2 Alternating Minimization Algorithm with Trajectory

Let M ∈ RT×N2

be an ADI sequence that consists of T unfolded images with
size N ×N . The standard low-rank model [13] can be expressed as

M = L+ agPg + E, rank(L) ≤ r, Pg ∈ Λ, (1)

where L is a low-rank matrix representing the background with quasi-static
speckles, ag, referred to as flux, corresponds to the intensity coefficient of the

planet signature Pg ∈ Λ ⊂ RT×N2

, where g ∈ [N ]× [N ] stands for the position
of the planet on the initial frame, Λ is the set of all feasible planet signatures,
and E is the noise term.

In existing approaches, the low-rank matrix L is estimated first. In particular,
the PCA approach computes L in (1) by truncated SVD. As an alternative, L
can be obtained by L1 low-rank approximation (L1-LRA), as proposed in [11].
Once L is estimated, a residual cube is then obtained as M −L, from which the
planet flux ag is estimated for each planet trajectory g by various methods; see,
e.g., [5, 6, 13].

Instead of sequentially estimating first the component L followed by estimat-
ing the flux ag, we propose to estimate them simultaneously in the following
optimization problem

min
L∈RT×N2 ,ag∈R

∥M − L− agPg∥ s.t. rank(L) ≤ r, Pg ∈ Λ (2)

where ∥·∥ denotes either ℓ1 or ℓ2 norm depending on the assumed distribution of
the error E in (1). The optimization problem (2) is addressed by alternatingly
solving the following two sub-problems until a stopping criterion is met:
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L(i) = argmin
L∈RT×N2

∥M − L− a(i−1)
g Pg∥ (3)

a(i)g = argmin
ag∈R

∥M − L(i) − agPg∥. (4)

When the norm is ℓ2, the matrix L(i) can be obtained by truncated SVD of

M − a
(i−1)
g Pg. The optimal value of a

(i)
g can be computed analytically as

a(i)g =
⟨Pg,M − L(i)⟩

∥Pg∥2F
, (5)

where ⟨·, ·⟩ denotes the Frobenius inner product.
When the norm is ℓ1, we solve the problem (3) with an algorithm suggested

by [11] using an exact block cyclic coordinate descent method. Moreover, (4)
becomes a least absolute deviation problem which we solve by an efficient ex-
haustive search over the kink points of the piecewise linear objective function as
in [13].

We produce a flux map, consisting of all possible trajectories, g 7→ ag by
simply returning (4) in the final iterate of the alternating iteration, then compute
the SNR map with VIP [7, 8] and use this as the detection map.

3 Numerical Experiments

We apply our algorithm to the publicly available ADI data set VLT/SPHERE-
IRDIS 51 Eri in the K1 (2.11 µm) band with a known planet. The cube has 256
frames covering 42◦ of parallactic angles and the frames are cropped to 100 by
100 pixels.

We compare our algorithm with the results of the classical PCA approach
(annular version) and the results of our algorithm using only a single iteration.
Our comparison focuses on the visual quality of the SNR maps [14] with the
SNR values on the selected pixels and the ROC curves. We use the same rank
parameter r = 20 for each algorithm, which was observed to work well for the
dataset [12]. In our preliminary experiments, we simply stop the algorithm after

the maximum of 100 iterations or when the relative change of the intensity a
(i)
g

is small, i.e. |a(i)g − a
(i−1)
g |/|a(i)g | < 0.001.

In order to see the performance, we choose two different trajectories: one is
located in the pixels of the planet, and the other is in the same annulus and
located in the pixels without a planet. Figure 1 shows how the flux ag changes
in each iteration. The results for both norms show that there is a considerable
amount of change in the flux ag for the Pg in the planet pixels, whereas the
change in the flux ag for the Pg in the pixels without a planet is very small.

In Fig. (2a, 2e) and Fig. (2b, 2f), we examine the performance of AMAT
when testing a location without a planet. We see that the estimated flux is of
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Fig. 1: Intensity a of the planet against the number of iterations. Left: The

intensity a
(i)
g is obtained using ℓ1 norm. Right: The intensity a

(i)
g is obtained

using ℓ2 (Frobenius) norm. The blue plots show how the intensity changes in
each iteration when we choose Pg in the location of the planet. The orange plots
show how the intensity changes in each iteration when we choose Pg in a location
without a planet.
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Fig. 2: Top: The SNR maps using ℓ1 norm. Bottom: The SNR maps using
Frobenius norm. Here, we apply SNR maps to the interim frame obtained by
using only one Pg to show the performance of applying the algorithm with mul-
tiple iterations as a visual, but normally we apply SNR maps to the flux map
obtained by combining all fluxes ag. The white circle represents the location of
Pg. Left two columns: Pg is located in the pixels without a planet. Right two
columns: Pg is located in the planet pixels.

very small magnitude, and with additional iterations, this estimation does not
change by much.
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In contrast, when AMAT is tested on a location with a planet in Fig (2c, 2g)
and Fig (2d, 2h), we see that it detects the flux much more strongly, which gets
more pronounced after the additional iterations.

When comparing the results for the ℓ1 and ℓ2 norms in Fig. 2, we see that,
in general, the ℓ1 estimator is able to produce a much better SNR at the price
of solving a more challenging non-smooth optimization problem.
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Fig. 3: ROC curves of algorithms. To better visualize the low false positive rate
(FPR) regime, we adjust the scaling of the axes by taking their square root. The
legend labels iter=n and iter=1 represent the algorithm variants performing the
maximum of 100 iterations and only a single iteration, respectively.

We calculate the deterministic ROC curves by following the approach out-
lined in [13], which involves counting the true positive (TPR) and false positive
(FPR) detections. We produce ROC curves by generating synthetic groundtruth
examples with the standard deviation of the pixel intensities in the annulus by
injecting fake planets into a data cube without planets using the VIP pack-
age [7, 8]. In the context of exoplanet detection, the most relevant part of the
ROC curve is in the low FPR regime. The plots in Fig. 3 demonstrate that
our method consistently outperforms the results of AnnPCA and the variant
performing just a single iteration in terms of ROC curves. Moreover, similar to
the findings for the SNR map, the results obtained using the ℓ1 norm are better
than those obtained with the ℓ2 norm.

4 Conclusion

In this paper, we propose a new AMAT method and demonstrate the benefit of
estimating the flux and the low-rank quasi-static speckle components simulta-
neously. This is in contrast to most of the existing methods that perform the
estimation of the two components sequentially. Applying our method on the
locations with planets enhances the estimated flux, while keeping parts of the
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image with no planet relatively unchanged. Future work could delve into the
consequences of iterative implementation in combination with other flux detec-
tion techniques, such as the likelihoodmap [13].
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