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Abstract. Reconstruction-based anomaly detection typically relies on
the reconstruction of a defect-free output from an input image. Such
reconstruction can be obtained by training an autoencoder to reconstruct
clean images from inputs corrupted with a synthetic defect. Previous
works have shown that adopting an autoencoder with skip connections
improves reconstruction sharpness. However, it remains unclear how skip
connections a�ect the latent representations learned during training. Here,
we compare internal representations of autoencoders with and without skip
connections. Experiments over the MVTec AD dataset reveal that skip
connections enable the autoencoder latent representations to intrinsically
discriminate between clean and defective images.

1 Introduction

Detecting defective samples in a production line based on visual inspection is
of great importance in industrial applications. The scarcity of anomalies and
variety in appearances make a supervised problem formulation inappropriate [1].
Instead, a training set of exclusively clean, i.e. defect-free images, and a test set
including both clean and defective images is generally considered.

Reconstruction-based approaches rely on an autoencoder trained on clean
images to perform an identity mapping [2, 3, 4]. During inference, such net-
work is expected to reconstruct exclusively clean structures, leading to large
reconstruction residuals when defective images are fed to the network [5]. In
a previous study [6], we considered an autoencoder architecture equipped with
long skip connections trained over images corrupted with a homemade synthetic
defect model. To avoid convergence towards a pure identity operator, we cor-
rupted training images with synthetic defects, adding stains of variable size and
random colour over the original image. This approach showed signi�cant im-
provement in detecting anomalies, especially on texture images.

In this paper, we investigate the impact of skip connections on the inter-
nal representations constructed by the autoencoder of both clean and defective
structures. As represented in Figure 1, adding skip connection leads to the
di�erentiation between representations for clean and corrupted images. Skip
connections are known to have the capacity to propagate �ne-grained informa-
tion from the encoder to the decoder [7]. However, it was not intuitive nor
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straightforward to predict the impact of those skip connections on the internal
representations of clean and defective structures across the autoencoder layers.
We observe that the corruption of the training input image with synthetic de-
fects leads to a signi�cant change in the latent representations when using skip
connections in the autoencoder architecture. In addition to providing intuitive
insights on the workings of trained autoencoders, this analysis proposes a valu-
able basis for extending the anomaly detection mechanism beyond the sole use
of the reconstruction residual.

C
le
a
n

C
o
rr
u
p
te
d

Input
(I)

Output
(O)

Residual
(|O − I|)

Internal representations

-

-

+

+

+

+

1
2

1 2

Fig. 1: Discrepancy between latent representations for a clean (�rst row) and
a corrupted (second row) version of an image in an autoencoder with skip con-
nections. Comparison with an autoencoder without skip connections will be
presented in a further section. (Red blocs.) Mean along the channel axis of the
activation tensors in the bottleneck (1) and in an intermediate layer (2).

2 Methods

2.1 Network architectures

In this work, the reconstruction of a clean version of any input image is based
on the use of a convolutional neural network. Our architecture, referred to as
an Autoencoder with Skip connections (AESc), is a variant of U-Net [7].
AESc takes input images of size 256×256 and projects them onto a latent space of
dimension 13×13×256 by means of six consecutive convolutional layers stridden
by a factor two. The back projection is performed by six layers of convolution
followed by an upsampling operator with a factor of two. All convolutions have a
5× 5 kernel. Unlike the original U-Net version, our skip connections perform an
addition, not a concatenation, of feature maps from the encoder to the decoder.

As a comparison, we also consider an Autoencoder (AE) network which
has the same architecture as described above, but without the skip connections.

2.2 Synthetic corruption

Our networks are trained to reconstruct a clean image out of a corrupted version
of it. The synthetic corruption that is considered is the addition of an irregular
ellipse of variable size and random colour, as described in [6].
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2.3 Notations

Input images. We denote by x ∈ RW×H×C an input image, where W,H and
C stand for the width, height and number of channels of x. In this article, the
input images are either clean or corrupted with synthetic defect (as de�ned in
[6]). For the MVTec AD dataset, we exclusively consider grayscale images with
W = H = 256 and C = 1.
Activation tensors. We de�ne the operator li(·) : RW×H×C → RWi×Hi×Ci

as the projection of an input image onto its activation tensor in the ith layer. In
this notation, Wi, Hi, and Ci respectively denote the width and height (spatial
dimensions) and the number of channels in layer i. According to our setup, l1(x)
corresponds to the activation tensor obtained after one convolutional layer while
l5(x) is the activation tensor in the autoencoder bottleneck.
Mean of activation tensors along channel axis. Given an activation
tensor li(x) ∈ RWi×Hi×Ci , we write µi(x) ∈ RWi×Hi for the mean of li(x) along
the channel axis. In the �gures of this work, µi(x) is used to illustrate the latent
representation of the autoencoder.

3 Experiments and Discussion

In this section, we analyse the impact of skip connections on the internal repre-
sentations of an autoencoder performing anomaly detection in the reconstruction-
based framework detailed in [6]. To detect defective structures in an input im-
age, it is expected that the network does not generalise the identity mapping
(promoted for clean structures during training) to the reconstruction of unseen
(defective) structures.

We �rst provide a qualitative analysis regarding the propagation across layers
of both clean and defective structures of the training set, for autoencoders with
and without skip connections. Then, we quantify the discrepancy between the
internal representations of a pair of clean and defective images. We rely on the
MVTec AD dataset [2], which contains 15 image classes. Among these 15 image
categories, 5 correspond to textures and 10 to objects. Since our observations
tend to di�er on textures and objects, we present our results on two images that
are representative of each image category.

3.1 Visualisation of activation tensors

Figure 2 provides a visual insight into how a clean and defective image propagate
through an autoencoder, with and without skip connections. These autoencoders
are denoted as AESc and AE, respectively. First, Figure 2a shows the mean of
the activation tensors along the channel axis in all layers of AESc for an image
from the texture category. Comparing the �rst and second rows suggests that
corrupting a texture input image with a synthetic defect leads to a strong dis-
crepancy between the latent representations of the clean image and a corrupted
version of it. Speci�cally, it leads to signi�cantly larger activation intensities in
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the region covered by the corruption mask. With the AE model, such a large
di�erence is not visible.

Second, Figure 2b displays a similar analysis for an image from the object
category. In contrast to the texture image, there is no signi�cant visual dis-
parity between the AESc and AE models. Unlike the previous example, higher
activation intensities correlated with the corruption are not clearly identi�able.
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(a) Example over an image from the texture category: Tile.
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(b) Example over an image from the object category: Capsule.

Fig. 2: Mean of the activation tensors along the channel axis {µ1, µ2, . . . , µ9} for
a clean image and a corrupted version with synthetic defect (as de�ned in [6]).
In both (a) and (b), the �rst and second rows show µi obtained with the AESc
model on the clean and corrupted images, respectively. The third and fourth
rows show µi obtained with the AE model. Spatial dimensions of the mean
activation tensors are provided in the column labels.
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3.2 Quanti�cation of the discrepancy

We quantify the discrepancy between the latent representations of a clean im-
age xcl. and a corrupted version xcorr. in the ith layer with the cosine simi-
larity applied over the mean of the activation tensors along the channel axis:
cos(µi(xcl.), µi(xcorr.)). Figure 3 compares the distributions of this metric in all
layers of AESc (orange) and AE (blue) for the MVTec AD dataset. Overall, the
distances between the activation tensors for AESc increase as we go deeper in the
network while those for AE decrease. This trend, which is stronger for texture
images, shows that AESc learns distinct latent representations for clean and de-
fective images. This observation is in line with observations made in Figure 2a.
The latent representations of AESc show higher activation intensities where the
image is a�ected by the corruption mask. In comparison, the latent representa-
tions of AE appear as being more similar for clean and corrupted versions of the
same image.

While the previous visual experiment (Figure 2b) showed no strong discrep-
ancy between latent representations of the AESc and AE models for the Capsule
category, this quantitative analysis suggests that the AESc decoder discriminate
between clean and defective structures for several object categories.

Bottle* Cable* Capsule* Carpet� Grid� Hazelnut* Leather� Metal nut*

Pill* Screw* Tile� Toothbrush* Transistor* Wood� Zipper* Legend

�texture

*object

Fig. 3: Distribution of cosine similarity (y-axis) applied over the mean of the ac-
tivation tensors along the channel axis: cos(µi(xcl.), µi(xcorr.)) between a clean
image xcl. and a corrupted version xcorr. of the same image. Distributions ob-
tained with the AE (blue) and AESc (orange) models are compared across net-
work layers (x-axis) for all image categories of the MVTec AD dataset.

4 Conclusions and Perspectives

In this paper, we study the impact of autoencoder skip connections on the latent
representations of clean and defective images for anomaly detection. Through a
visual analysis of the mean of the activation tensors along the channel axis, a
strong discrepancy between a clean and a corrupted input texture is observed in
nearly all layers of an autoencoder with skip connections. Speci�cally, activation
intensities signi�cantly increase on the corruption's spatial support. Without
skip connections, the autoencoder does not adopt this behaviour.
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Representative examples for both texture and object image categories are
studied. Although a discrepancy is not visible with an object input, the quanti-
tative study reveals that the representation tensors of clean and defective objects
are distinguishable from each other when skip connections are added to the au-
toencoder architecture.

This discrepancy between clean and defective structures across layers in
an autoencoder with skip connections is of particular interest to improve the
anomaly detection mechanism introduced in [6], which solely relies on the recon-
struction residual. The mean of the activation tensors in the decoder provides
interesting anomaly maps that can be useful for anomaly localisation. It would
be particularly interesting to study the intrinsic properties of this new anomaly
localisation information (robustness to noise, generalisation from synthetic to
real defects, etc.) to determine the extent to which it can augment existing
detection mechanisms. Also, an explicit optimisation constraint during training
can be considered to bias towards discrepancy of latent representations between
clean and defective structures.
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