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Abstract. To alleviate the cost incurred by orthogonality constraints
in optimization and model training, we propose a stochastic coordinate
descent algorithm on the Stiefel manifold. We compute expressions for
geodesics on the Stiefel manifold with initial velocity aligned with coordi-
nates of the tangent space and show that, analogously to the orthogonal
group, iterate updates of coordinate descent methods can be efficiently
implemented in terms of multiplications by Givens matrices. We illustrate
our proposed algorithm on deep neural network training.

1 Introduction

While orthogonality constraints have initially been proposed for recurrent neural
networks [1], they have been extended to a wide range of other architectures,
including fully-connected, convolutional, and residual neural networks [2, 3, 4,
5]. Imposing orthogonality constraints (either hard or soft, i.e., regularizers) is
known to improve training stability and therefore reduce the risk of encountering
exploding and vanishing gradients. Orthogonal initializations have been shown
to lead for some architectures to dynamical isometry; a regime where the singular
values of the input-output Jacobian concentrate around one, leading to faster
training [2]; the benefits of orthogonal initialization on the speed of training
deep linear neural networks have been proven in [6]. These benefits are partly
explained in [7], where a connection is made between the maximum curvature of
the optimization landscape as measured by the Fisher information matrix and
the spectral radius of the input-output Jacobian. Finally, let us mention that
orthogonality constraints were also used in generative adversarial networks [8, 9].

The biggest limitation to the use of orthogonality constraints for deep neu-
ral networks is the additional training cost due to the constraints. When all
constrained matrices are square (and not rectangular), these costs can be alle-
viated by relying to coordinate descent on the orthogonal group, for which the
cost of iterate update (due to the computation of geodesics/retractions) scales
linearly with the size of the matrix [10, 11], instead of cubically for the usual
Riemannian gradient descent algorithm. Our goal with this paper is to extend
this algorithm to the Stiefel manifold, i.e., the set of rectangular matrices with
orthonormal columns. The only work, to our knowledge, addressing coordinate
descent on the Stiefel manifold in the case p < n is [12], but the authors do not
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propose practical expressions for the iterations nor implementation/numerics,
their contribution is theoretical.

2 Geometry of the Stiefel manifold

We first introduce the Stiefel manifold, namely, the set of matrices with or-
thonormal columns St(p, n) := {Y ∈ Rn×p : Y ⊤Y = Ip, }, with Ip the p × p
identity matrix. This set is known to be a D-dimensional Riemannian manifold,

with D := np − p(p+1)
2 . A manifold is a set that locally looks flat, i.e., that is

equipped with a collection of charts allowing local mappings to open sets of the
Euclidean space. Manifolds admit around any point a first-order approximation,
called tangent space. In Riemannian manifolds, tangent spaces are endowed with
a smoothly varying inner product, referred to as Riemannian metric. We de-
fine below several geometrical tools required by our algorithm: tangent spaces,
Riemannian partial derivatives, and geodesics. This section relies on [13, 11].

The tangent space of the Stiefel manifold at Y ∈ St(p, n) is:

TY St(p, n) = {Y Ω+ Y⊥K : Ω = −Ω⊤,K ∈ R(n−p)×p}. (1)

The Riemannian metric is chosen as the Euclidean inner product (i.e., St(p, n)
is seen as an embedded submanifold of Rn×p), so that the norm of any tangent

vector ξY ∈ TY St(p, n) is ∥ξY ∥ = (tr
(
ξ⊤Y ξY

)
)

1
2 . Our approach requires us to

select an orthonormal basis for TY St(p, n). We will rely on the orthonormal
basis

B = {Y Ωi,j , Y⊥Ku,v} i,v=1,...,p,
j=i+1,...,p
u=1,..,n−p

, (2)

where

Ωi,j =
eie

⊤
j − eje

⊤
i√

2
and Ku,v = eue

⊤
v

are orthonormal bases of the set of skew-symmetric p×p matrices, and the set of
(n−p)×p matrices, respectively, and where ei refers to the ith canonical vector
of suitable dimension. For an arbitrary smooth function h : St(p, n) → R, the
choice of basis (2) induces a notion of Riemannian partial derivative. The latter
can be easily computed from the Euclidean gradient ∇eh(Y )1. The Riemannian
partial derivative associated with a basis vector η ∈ B is

Dh(Y )[η] =

{
tr
(
Ω⊤

i,jY
⊤∇eh(Y )

)
if η = Y Ωi,j for some i, j

tr
(
K⊤

u,vY
⊤
⊥ ∇eh(Y )

)
if η = Y⊥Ku,v for some u, v.

(3)

Finally, the geodesic starting at Y (0) ∈ St(p, n) with initial velocity Ẏ (0) ∈
1We rely here on an expression of the Riemannian partial derivatives in terms of the Eu-

clidean gradient, as (a stochastic estimate of) the latter is typically available for DNN training,
via backpropagation. We emphasize that, in general, computing the entire Euclidean gradient
is not needed for evaluating the Riemannian partial derivatives.
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TY (0)St(p, n) is the curve Y : t 7→ Y (t) with

Y (t) =
(
Y (0) Ẏ (0)

)
CI2p,p exp(−tY (0)⊤Ẏ (0)),

with C := exp t

(
Y (0)⊤Ẏ (0) −Ẏ (0)⊤Ẏ (0)

Ip Y (0)⊤Ẏ (0)

)
.

(4)

3 Geodesics along coordinate directions

Our proposed algorithm relies on expressions for geodesics with initial velocity
aligned along an axis of the basis (2) of the tangent space. It is well-known that,
in the case of square matrices (the orthogonal group), geodesics with initial
velocity restricted to one coordinate axis of the tangent space to the orthogonal
group can be very efficiently computed in terms of multiplication by a Givens
matrix [10]. In this section, we extend the results of [10] to the Stiefel manifold.

Theorem 1 The geodesic emanating from Y (0) with initial velocity η := Y (0)Ωi,j

is
Y (t) = Y (0) exp(tΩi,j) = Y (0)Gi,j(

√
2t) (5)

where Gi,j(t) is the Givens matrix

Gi,j(t) :=



1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

...
...

0 · · · cos(t) · · · sin(t)
... 0

...
...

. . .
...

...

0 · · · − sin(t) · · · cos(t)
... 0

...
...

...
. . .

...
0 · · · 0 · · · 0 · · · 1


. (6)

In particular, evaluating it at some t requires O(n) floating point operations,
compared to O(np2) for arbitrary initial velocities.

Proof 1 Equation (4) becomes

Y (t) =
(
Y (0) Y (0)Ωi,j

)
exp t

(
Ωi,j Ω2

i,j

I Ωi,j

)
I2p,p exp(−tΩi,j). (7)

Letting P :=

(
Ωi,j Ω2

i,j

I Ωi,j

)
we have P k = 2k−1

(
Ωk

i,j Ωk+1
i,j

Ωk−1
i,j Ωk

i,j

)
. (This equality

can be easily checked for k = 2 and provable via recurrence for k ≥ 2). Let us
now write the Taylor development of the matrix exponential:

exp(tP ) =

(
I + tΩi,j + t2Ω2

i,j +
2
3 t

3Ω3
i,j + . . . X

tI + t2Ωi,j +
2
3 t

3Ω2
i,j + . . . Y

)
=

(
I
2 + 1

2 exp(2tΩi,j) X
Ω−1

i,j

[
1
2 exp(2tΩi,j)− I

2

]
Y

)
,
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where the blocks X and Y are not required, hence, not computed (note that the
two diagonal blocks are equal so that Y = I

2 + 1
2 exp(2tΩi,j)). Inserting this

expression for exp(tP ) in (7), we get the desired result.

Theorem 2 The geodesic emanating from Y (0) with initial velocity η := Y (0)⊥Ku,v

is

Y(:,k)(t) =

{
Y (0)(:,k) if k ̸= v
Y (0)(:,v) cos(t) + Y (0)⊥(:,u)

sin(t) if k = v.
(8)

In particular, evaluating it at some t requires O(n) floating point operations.

Proof 2 Note that (4) becomes

Y (t) =
(
Y (0) Y (0)⊥Ku,v

)
exp t

(
0 −Ev

I 0

)
I2p,p, (9)

where Ev = eve
⊤
v . Let P =

(
0 −Ev

I 0

)
, we have

P 2k =

(
(−Ev)

k 0
0 (−Ev)

k

)
and P 2k+1 =

(
0 (−Ev)

k+1

(−Ev)
k 0

)
.

Using again the Taylor development of the matrix exponential, we get:

exp(tP ) =

(
I − 1

2 t
2Ev +

1
24 t

4Ev + . . . X
tI − 1

6 t
3Ev +

1
120 t

5Ev + . . . Y

)
=

(
I + (cos(t)− 1)Ev X
tI + (sin(t)− t)Ev Y

)
,

where again we do not compute the blocks X and Y as they do not appear in the
final expression due to the right multiplication by I2p,p. The geodesic (9) is :

Y (t) = Y (0)[I + (cos(t)− 1)eve
⊤
v ] + Y (0)⊥eue

⊤
v [tI + (sin(t)− t)eve

⊤
v ]

= Y (0) + (cos(t)− 1)Y (0)eve
⊤
v + Y (0)⊥ sin(t)eue

⊤
v ,

which can be written column-wise as (8).

4 Stochastic coordinate descent on the Stiefel manifold

We consider without loss of generality the optimization problem

min
X∈Rl×m,Y ∈St(p,n)

f(X,Y ), (P)

in which some parameters are restricted to the Stiefel manifold while others are
unconstrained, as often in DNN training. Algorithm 1 presents our proposed
Riemannian coordinate descent (St-SRCD) algorithm on the Stiefel manifold.
Similarly as in [11], we use the notation g̃kX for the stochastic Euclidean gradient
of f with respect to the unconstrained variable X at iteration k, and g̃kY,ik for
the ik stochastic Riemannian partial derivative of f with respect to Y , obtained
by inserting a stochastic estimate of the Euclidean gradient in (3).
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Algorithm 1 St-SRCD: Stochastic RCD on the Stiefel manifold

1: Let {αk} be a sequence of stepsizes. Set k = 0, and initialize the uncon-
strained and orthogonal variables X0 ∈ Rl×m, Y 0 ∈ St(p, n).

2: while not converged do
3: Compute the (stochastic) gradient g̃kX
4: Update the unconstrained variable: Xk+1 = Xk − αkg̃kX
5: Select a coordinate ik ∈ {1, . . . , D} of the tangent space TY kSt(p, n)
6: Compute the (stochastic) Riemannian partial derivative g̃kY,ik using (3)

7: Update the orthogonal variable by letting Y k+1 be the point of the
geodesic starting from Y k, with initial velocity −αkg̃kY,ik , at time t = 1
(This geodesic is given by either (5) or (8), depending on the coordinate).

8: k := k + 1
9: end while

5 Numerical experiments

We used our proposed optimizer for training a VGG network on CIFAR-10 and
CIFAR-1002. All CNN kernels were reshaped into matrices constrained to belong
to the Stiefel manifold, and reshaped back to the appropriate size afterwards;
the other model parameters (e.g., linear classification layers) were kept uncon-
strained. As a comparison point, we considered SGD with momentum, ADAM,
stochastic Riemannian gradient descent, Cayley SGD, and Cayley ADAM [14].
These two first optimizers are fully unconstrained (no orthogonality constraints
on the CNN kernels), while the three last impose the same constraints as our
approach. All methods were trained with learning rates 0.001 and 0.01 for uncon-
strained and constrained parameters, respectively. During training, a learning
rate scheduler was used with a period (number of epochs before learning rate
decrease) of 40 and multiplicative factor .2. We trained all models on the same
experimental setup on a single A100 GPU for a fair comparison and bench-
marking. It can be observed from results reported in Table 1 that the proposed
St-SRCD optimizer consistently achieves better than or comparable performance
to the baselines. In particular, we remind that our proposed algorithm has a
stricly lower complexity per iteration than RGD.

Table 1: Classification errors(%) on CIFAR-10 and CIFAR-100
Optimizer CIFAR-10 CIFAR-100

SGD 6.32 26.84
ADAM 6.61 27.10

CAYLEY SGD 5.77 25.48
CAYLEY ADAM 5.88 25.61

RGD 5.63 25.49
St-SRCD (ours) 5.66 25.47

2https://www.cs.toronto.edu/~kriz/cifar.html
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[7] P. A. Sokòl and I. M. Park. Information geometry of orthogonal initializations
and training. In Int. Conf. on Learning Representations (ICLR), virtual, 2020.

[8] J. Muller, R. Klein, and M. Weinmann. Orthogonal Wasserstein GANs.
arxiv:1911.13060, 2019.

[9] A. Pandey, M. Fanuel, J. Schreurs, and J. A. K. Suykens. Disentangled Represen-
tation Learning and Generation With Manifold Optimization. Neural Computa-
tion, 34(10):2009–2036, 2022.

[10] U. Shalit and G. Chechik. Coordinate-descent for learning orthogonal matrices
through Givens rotations. In Int. Conf. on Machine Learning (ICML), Beijing,
China, 2014.

[11] E. Massart and V. Abrol. Coordinate descent on the orthogonal group for recurrent
neural network training. In 36th AAAI Conf. on Artificial Intelligence (AAAI),
virtual, 2022.

[12] D. H. Gutman and N. Ho-Nguyen. Coordinate descent without coordinates: Tan-
gent subspace descent on Riemannian manifolds. arxiv preprint 1912.10627, 2020.

[13] A. Edelman, T. A. Arias, and S. T. Smith. The geometry of algorithms with or-
thogonality constraints. SIAM J. on Matrix Analysis and Applications, 20(2):303–
353, 1998.

[14] J. Li, F. Li, and S. Todorovic. Efficient Riemannian Optimization on the Stiefel
Manifold via the Cayley Transform. In Int. Conf. on Learning Representations
(ICLR), virtual, 2020.

452

ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9. 
Available from http://www.i6doc.com/en/.


	AllPapers
	Thursday
	ES2023-143-4





