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Abstract.

Label noise can significantly affect the generalization of deep neural net-
works. Nevertheless, it is omnipresent in real world applications. This
paper introduces an approach for identifying the samples from a dataset
which are likely to have correct annotations. The proposed method com-
putes the agreement of a sample with its nearest neighbours retrieved from
the feature space provided by a neural network. We introduce a tempo-
ral ensembling strategy which takes into account the agreement scores
obtained by a sample during previous training epochs. The superiority
of our approach over several baselines is shown on image classification
datasets.

1 Introduction

Training deep neural networks requires large datasets containing carefully an-
notated instances. While obtaining such high quality labels can be costly, an-
notations retrieved through automatic but imprecise methods are usually much
cheaper. Due to this reason, robust learning in the presence of label noise has a
great practical importance [1, 2].

One of the prominent research directions for learning with noisy labels is
represented by sample selection methods, which aim to identify instances that
are likely to have correct annotations in order to use only these samples during
training [3, 4]. A popular selection technique is given by k-nearest neighbours
(k-NN) filtering, which considers clean samples to be the instances that agree
in terms of label with their k nearest neighbours [4, 5, 6]. This idea, which
dates back to the work of Wilson [7], has been recently investigated in deep
learning contexts, by retrieving neighbours using the features obtained from
neural networks layers [5, 6]. In this paper, we propose a deep k-NN approach
that takes into account neighbours obtained for more than just the current epoch
in order to identify clean samples. The proposed approach employs a temporal
ensembling [8] procedure for calculating the scores used to decide if a sample
has a correct label. More specifically, a weighted average between past scores
of a sample and the score obtained for the current epoch is computed. Our
method aims to explore whether leveraging the information learned by deep
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neural networks during training can improve k-NN filtering. We evaluate the
proposed approach on benchmark image datasets.

2 Related work

The literature approaches for mitigating label noise include robust loss functions,
regularizers, or sample selection strategies. The generalized cross-entropy (GCE)
loss [9] combines the advantages of the non-robust cross-entropy (CE) and of the
robust mean absolute error. Active-Passive losses (APL) [10] are robust losses
which are formed using a normalization of a non-robust term and a robust term.
Iscen et al. [1] introduced a regularizer that matches the prediction of a sample
with the predictions of its neighbours. Several methods detect clean samples as
the ones for which a small loss is obtained [3, 2], motivated by the observation
that neural networks first learn the correct labels and only afterwards overfit the
noisy ones. In [2], scores are assigned to small-loss samples using so-called local
votes, that take into account only the current batch and global votes, which
are computed using the training history. Co-teaching [3] is based on the small-
loss selection strategy, but uses two networks which select clean instances for
each other. k-NN methods include the work of Bahri et al. [4], which filters
samples based on whether the sample’s label agrees with the labels of its k
nearest neighbours. The MOIT approach [5] includes a k-NN sample selection
procedure that uses estimated labels for the samples neighbours and ensures
that a balanced number of samples per class is selected. The approach proposed
in [6] is another iterative method consisting of sample selection and relabelling
using a balanced k-NN procedure.

3 Proposed Approach

Our proposed approach, Temporal Ensembling-based k-NN (TE-kNN) is a sam-
ple selection method built on a deep k-NN procedure [5, 4, 6]. TE-ENN is used
iteratively during the training of a neural network on a dataset containing noisy
labels in order to select a subset of reliable samples. These selected instances
will be used to update the network’s weights during the next epoch.

Given a sample z; and its label y, (represented as a one-hot vector) we
compute the set N; of its k nearest neighbours, considering the cosine distances
between the representations obtained from the last layer in the neural network
before the classification layer. The labels of these neighbours are used to estimate
a probability distribution over the classes: p; = % > jen: Vi The k-NN score of
sample x; for the current epoch is computed as the cross-entropy between the
true label distribution and the label distribution estimated using the neighbours’
annotations: scorernn(z;) = —y? logp,. As noted in [5], lower scores indicate
that the sample is more likely to have a correct label, since it agrees with the
labels of its neighbours. However, the identified neighbours or their annotations
may be incorrect due to the noisy labels used in training. Moreover, towards the
end of training, the network is more prone to overfitting to incorrect examples
than in early epochs [11, 3]. With the aim of obtaining more robust scores
and inspired by the temporal ensembling strategy used in [8, 11], we propose to
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compute a weighted average of the scores obtained for the previous epoch and
the current k-NN scores. Unlike other k-NN sample selection approaches [4, 5, 6],
we compute scores by taking into account the model’s evolution during training.
Therefore, the score for epoch t is obtained as: score:(z;) = a * score;—1(x;) +
(1 — @) * scoregyn(x;). This strategy aims to improve the scores computations
by considering both past and current scores. Our approach is different from the
method introduced in [11], which applies temporal ensembling to obtain network
predictions used for computing a new robust regularizer [11]. In contrast, we
introduce a temporal ensembling procedure for estimating scores that measure
how likely the label of a sample is to be correct.

Afterwards, r(t)% samples with the lowest scores are selected, where r(t) can
be obtained using various methods. In this study, we follow the strategy pro-
posed by Han et al. [3]. Initially all available samples are used. r(t) is linearly
decreased during the first 10 epochs, up to the (known or estimated) proportion
of correct labels present in the dataset. Then, a constant number of samples is
selected. We note, however, that other strategies are possible, such as fitting a
Gaussian mixture model on the obtained scores, as in [2] or defining adaptive per-
class thresholds as in [5]. We study two variations of the proposed approach, by
considering two types of initialization: zero-initialization and autoencoder (AE)
initialization. The zero-initialization means that the samples scores are 0 at the
beginning and the network is initialized with random weights. In the AE initial-
ization, the network is initialized with the weights of the encoder component of
an AE trained in an unsupervised manner on that dataset. In this setting, the
initial samples scores are obtained by computing the nearest neighbours set in
the latent space of the AE. The method is shown in Algorithm 1.

Algorithm 1: Training algorithm using the proposed TE-kNN method.

Input: dataset D, initial sample scores sg, hyper-parameter a, number
of epochs n, number of neighbours k, rates r(¢t) for 1 <t <n

Output: the trained model

Dclean «~D

scoreg + So

for t < 1,n do
@update model weights using the samples from D jeqn
for (z;,y;) € D do
@compute nearest neighbours set A; in the current feature space
and scorepnn(2;)
scores(x;) < ax scores_1(xz;) + (1 — a) % scorexnn (2;)
end
Deican < 1(t)% samples with the smallest scores
end
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4 Experimental Setup

Datasets Our approach was evaluated on the SVHN [12], CIFAR-10 and
CIFAR-100 [13] datasets using synthetic label noise. The datasets are formed
of RGB images grouped into 10 classes for SVHN and CIFAR-10 and into 100
classes in the case of CIFAR-100. The noisy training datasets are obtained fol-
lowing the procedure from [10], using so-called symmetric noise, by randomly
swapping a part of the labels with a label that is incorrect. We generate two
noisy versions of the dataset, using two noise rates previously investigated in the
literature [5, 10]: 20% and 60%. The test sets contain the clean, original labels.
Training details We used a neural network architecture introduced in [10],
which consists of six convolutional layers (filter sizes: 64-64-128-128-196-196)
and two linear layers (neurons: 256—+# of classes). Every layer in the network
was followed by batch normalization and ReLU and after each group of two
convolutions a max pooling layer was added. The batch size was set to 64 and
the SGD optimizer with momentum was used, having an initial learning rate
of 0.01. A cosine annealing procedure was applied to the learning rate, which
was reduced up to a minimum value of 0.001. Weight decay of 10~* was used.
The network was trained for 120 epochs in the case of SVHN and CIFAR-10
and for 150 epochs on CIFAR-100. The hyper-parameters for TE-kKNN were
chosen using a clean validation set. k was set to 25 and « to 0.2 for CIFAR-10
and SVHN, while k£ = 250, a = 0.5 for CIFAR-100. Weak data augmentations
were applied, following [10]: random crops and horizontal flips for CIFAR-10
and SVHN and random crops, flips and rotations for CIFAR-100. The AE was
formed of an encoder having the same architecture as the classifier (excluding
the last layer) and a symmetric decoder. The AE was trained for 100 epochs
using the Mean squared error loss and SGD with momentum and learning rate
of 0.05. A learning rate scheduler and weight decay were applied for this model
as well. The implementation was done using PyTorch.

5 Results and discussion

We compared our approach with multiple baselines: three loss functions - CE,
APL [10], GCE [9] (see Section 2) - and two sample selection strategies - selection
of the small loss instances and k-NN filtering (using only the current epoch’s
scores). For APL, we trained the NCE+RCE version, which gave the best overall
results in [10]. The baselines were re-implemented using publicly available code
[10, 5, 3, 6] and for GCE and APL we used the hyper-parameters suggested in
[10]. All methods were trained in the same regime, using the same network and
all sample selection methods used the same procedure for calculating the ratio
of samples to be used in each epoch (7(t)), as described in Section 3. Table 1
shows the obtained results. We trained TE-kNN using the CE loss and zero-
initialization (denoted in the table by TE-kNN) as well as using AE initialization
(AE init). For a fair comparison with TE-kKNN using AE init, we also report
results for two baselines initialized with the pre-trained AE weights: the best
competing loss function (APL) and the best competing sample selection method
(k-NN). In both types of initialization (random and AE), the best results on
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Dataset — [ SVIN [ CIFAR-10 [ CIFAR-100 \

| Method | / Noiserate — | 20% |  60% | 20% | 60% | 20% | 60% |
CE 82.68£0.34 | 42.2240.41 | 76.3120.16 | 37.96£0.24 | 47.93£0.55 | 20.38%0.75
GCE [9] 93.46£0.10 | 57.53£0.93 | 88.094:0.40 | 64.08£1.29 | 61.26£0.14 | 48.2740.55
APL [10] 95.08£0.06 | 69.99+£0.59 | 89.17+0.30 | 80.1840.63 | 62.35+0.57 | 48.28+1.35
Small Loss 90.84+0.39 | 74562043 | 86.14+£0.10 | 77.81£0.10 | 59.49+0.23 | 47.97+0.66
&-NN 95.38£0.04 | 76.55+1.48 | 89.17+0.17 | 80.68£0.35 | 59.77+£0.28 | 45.42+0.38
TE-kNN 95.48+0.13 | 77.04%1.56 | 89.37£0.13 | 81.55:0.42 | 60.29£0.39 | 45.56:£0.19
APL (AE init.) 95.12£0.07 | 71.85%0.50 | 88.74%0.33 | 79.76£0.60 | 64.55%0.64 | 41.40£1.17
E-NN (AE init.) 95.67£0.04 | 77.99+0.97 | 89.9910.15 | 82.09£0.24 | 61.20£0.19 | 47.74%0.58
TE-*NN (AE init.) | 95.79£0.06 | 78.71+1.28 | 90.2410.40 | 83.20£0.10 | 61.69+0.32 | 48.36:0.40

Table 1: Means and standard deviations of the test accuracies over 3 runs. Best
results for each type of initialization are shown in bold.

the SVHN and CIFAR-10 datasets are obtained by TE-ANN, which slightly
outperforms the classical k-NN. The use of AE initialization is beneficial for
k-NN and TE-kKNN on all datasets. On CIFAR-100 with 20% noise TE-kNN is
outperformed by APL and GCE, while on 60% label noise our approach is also
surpassed by the small loss method. However, when using AE initialization, TE-
ENN outperforms both k-NN and APL on CIFAR-100 in the 60% noise setting,
while on 20% noise it is surpassed only by APL. In order to analyse the impact of
k on the performance, we show in Figure 1a the test set accuracy obtained by k-
NN and TE-KNN on the CIFAR-100 dataset using different values of k. TE-kKNN
is more robust to the choice of k£ than k-NN and obtains good performance even
for a very small number of neighbours due to the temporal ensembling strategy.
However, when using larger k values, the differences between the two approaches
are smaller. Figure 1b illustrates the evolution of the sample selection process
for TE-ENN. It shows the proportion of samples that are correctly identified as
being clean from the samples selected by TE-kANN for each epoch on CIFAR-10
using 60% label noise. The selection of clean samples improves during training.

6 Conclusions

This paper proposed a k-NN inspired sample selection method based on a tem-
poral ensembling strategy. We provided proof-of-concept results showing the
promising performance obtained by our approach on synthetic symmetric label
noise. Future work will focus on evaluating TE-ENN using more challenging
datasets and real-world label noise. Additionally, extensions of the k-NN strat-
egy using class-balancing techniques and adaptive thresholds for the scores such
as the ones from [5, 6] will be envisaged.
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Fig. 1: Test set accuracy using different values of k£ for kNN and TE-ANN on
the CIFAR-100 dataset using 20% noise rate (a) and proportion of samples that
are correctly identified as clean by TE-kNN during training on CIFAR-10 (b).
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