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Abstract. In this paper, we investigate neural models based on graph
random features. In particular, we aim to understand when over-param-
eterization, namely generating more features than the ones necessary to
interpolate, may be beneficial for the generalization of the resulting mod-
els. Exploiting the algorithmic stability framework and based on empirical
evidences from several commonly adopted graph datasets, we will shed
some light on this issue.

1 Introduction

When dealing with large-scale problems or aiming for computational efficiency, a
commonly adopted approach is to exploit feature sketching (random projections
followed by a component-wise non-linearity) in conjunction with a linear classi-
fier. The behavior of linear classifiers on increasing number of random features
has been studied from the theoretical point of view, in particular for ridge regres-
sion [1] and based on stochastic gradient descent [2], showing, theoretically and
empirically, the presence of the double descent and best-overfit phenomena [3-6],
namely the ability of these models to improve the generalization performance in
over-parameterization, i.e., when having much more parameters than the ones
needed to interpolate. To the best of authors’ knowledge, no study in literature
considers the case of random graph neural features. We speculate that the rea-
son is that the majority of randomized graph networks in literature are based
on a recurrent scheme of Reservoir Computing that, while generating expres-
sive features, can result in a high computational complexity with hundreds or
thousands of features [7].

Recently, an untrained graph neural model has been proposed [8] that can
efficiently generate thousands of non-linear features. The classification (or re-
gression) task is performed by a linear model, e.g. ridge classification, starting
from the randomized features. This model allows us to study the behavior of
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untrained graph neural models when varying the number of generated features.
In particular, we aim to understand when it may be convenient from the gener-
alization performance point of view to generate a large number of random graph
features (going beyond the interpolation threshold). For this purpose, we will
leverage the Algorithmic Stability framework [3] and empirically show its po-
tentiality in giving insights on the generalization ability of over-parameterized
neural models based on graph random features. While in this paper we focus on
a single randomized neural model for space constraints, it would be possible, in
the future, to study other untrained feature extraction methods for graphs.

2 Background and Related Works

In structured data domains the models proposed in the last few years show
increasing complexity, leading to novel architectures with a considerably high
number of parameters. Unfortunately, this implies a high computational cost,
especially in training the models.

Authors of [9] proposed the first model for graph domain that exploits the
reservoir computing framework. The proposed model, dubbed GraphESN;, is
composed of a non-linear reservoir and a feed-forward linear readout. The com-
putation of the global state involves an iterative process (run till convergence).
Authors of [10] propose a model, dubbed Multi-resolution Reservoir Graph Neu-
ral Network (MRGNN) model, that exploits a Reservoir Convolutional layer
for graphs able to simultaneously and directly consider all topological receptive
fields up to k-hops. Recently, authors of [11] explored randomized graph convo-
lutions for the task of node classification (differently from this paper in which
we consider the more challenging setting of graph classification). The authors
propose a single-layer architecture defined as Z = o(A2XW)3, where o is the
sigmoid function, A € R™*" is the adjacency matrix of the graph, W € R4x™
is the (random) wight matrix for m hidden neurons (that is left untrained), and
B are the trained output weights. Simultaneously, in the unstructured domain,
researchers have started to questioning themself about a mechanisms, called
over-parametrization, that even if studied from a long time [12], have recently
unlocked the potentiality of deep network such as the the large language mod-
els [13]. In simple words, over-parameterization means that we leverage models
with more parameters than the ones necessary to interpolate the data, namely
perfectly fit or memorize the available data, to obtain good generalization perfor-
mance [3]. Recent results showed that, even if counter-intuitive, increasing the
number of parameters after the interpolating threshold can increase the gener-
alization ability of the model since it increases its stability [3, 4]. Unfortunately,
stability is not always simple to compute to evaluate the generalization ability of
a model [3]. We compute stability with the condition of the Gram matrix [3-5]
induced by the random graph projection.

3 Graph Random Features and Algorithmic Stability

In this paper, we aim to study if and under which conditions it is convenient to
develop overparametrized graph models when using graph random features. We
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seek an answer in recent research exploiting measures from statistical learning
theory, such as the Algorithmic Stability, and exploring their relationship with
the observed empirical behaviour of the generalization error.

Let us first summarize a recent approach for generating random features
based on graph neural networks [8], that we will exploit in this paper. The
randomized architecture is inspired by fully trained graph neural networks, in-
cluding the non-linearity scheme. Specifically, multiple graph convolution layers
are stacked, each one followed by a hyperbolic tangent element-wise non-linear
activation function [8]. The authors considered the GCN [14] graph convolu-
tion. The hidden node representation computed by the [-th layer is defined as:
HO = tanh(SHI"DWO) where S = (D-2AD™2) is the normalized Lapla-
cian adopted by the GCN, D is the diagonal degree matrix where d;; = ; @ij
and, W are the layer parameters and H® = X. Note that we omit the bias
terms for the sake of simplicity. The final node representations are obtained
concatenating the representation computed by each graph convolution layer, i.e.
H=[H®W,. . . HY] where L is the number of layers of the network. Crucially,
the weight values in W are initialized randomly and left untrained and ini-
tialized with the Glorot uniform approach [15] with a gain hyperparameter 6 to
control the effective scaling of W) In the resulting process, a weight matrix
of shape n x m will have entries sampled from a uniform distribution U(—a,a)
where a = 04/6/n+m. To perform graph-level tasks, a global pooling layer is
exploited to obtain a single representation for the whole graph. The Percent-
age of Positive Values (PPV) is a non-differentiable pooling mechanism used

in randomized networks and defined as: PPV (z) = L 37" ' I[z; > 0], where
I[z; > 0] is the indicator function which value is 1 if z; > 0, 0 otherwise. Au-
thors proposed to use as global pooling both the Global Max Pooling and PPV,
concatenating the resulting representations. Note that this choice doubles the
size of the global graph representation compared to the representations of the
single nodes provided in output by the untrained graph convolution. Finally,
the authors proposed to use a ridge classifier as a readout for its computational
efficiency.

Let us now consider the Algorithmic Stability. From this random graph rep-
resentation, it is possible to compute an approximation of a specific notion of
Algorithmic Stability, the Hypothesis Stability, that, together with the training
error, are able to give insights on the generalization error and are fast to com-
pute [3]. Let h, be the hidden representation for a graph computed by the model
presented before, and H be the matrix collecting the representations of all train-
ing graphs. We can consider this representation as the input of a linear model
(the readout). It has been shown that the Hypothesis Stability A is proportional
to the conditioning of the Gramian matrix HHT, i.e., A o Cond(HHT) where
Cond is a function computing the condition number of a matrix with eigenvalues
A, 1.6, Amax /A, Thus, we can study the relationship between the approxima-
tion of the Hypothesis Stability of such representation and the generalization
capabilities of the models trained on such representations. In fact, the smaller
the training error and the smaller the stability, the higher the generalization
ability of the learned model should be [3].
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Fig. 1: ENZYMES dataset.

4 Experimental results

In this section, we present some empirical evidences regarding the ability of Algo-
rithmic Stability to explain the good generalization abilities of over-parameterized
neural models based on graph random features.

Datasets. Among the different graph classification benchmark datasets
available we considered three datasets related to bio-informatics: ENZYMES [16],
D&D [16], and NCI1 [17].

Experimental setup. We study the behaviour of the model described in
Section 3 varying the number of neurons (parameters) for certain configurations
of the hyperparameters. Due to space constraints only a subset, the most in-
formative, of the results are reported. We fixed the number of layers to four.
We plot the performance varying the number of neurons for each layer from 10
to 10,000 (5,000 for D&D) per layer. Since we use four layers and concatenate
two different readouts, the resulting graph representation is up to size 80,000
(40,000 for D&D). However, since the weights are not trained, we just have
to perform the forward phase which is extremely fast even with a high num-
ber of features to extract. Then, we trained a ridge classifier characterized by
a regularization hyperparameter a taking values in the set {0,107%,... 10%}.
We also considered multiple values of 6, for weight initialization, in the set
{0.01,0.1,1,3,5,10, 30, 50}.

Results and Discussion. In this section, we report for different datasets
and different hyperparameters configurations that can reach competitive per-
formance, the training, validation, and test accuracies, varying the number of
neurons. We also report the Algorithmic Stability estimated via the condition
number of the Gram matrix (see Section 3), and the interpolation threshold (i.e.,
the value of the number of neurons such that the accuracy on the training set
is 100% without regularization). Figure 1 reports the results for the ENZIMES
dataset for different values of . From Figure 1 we can see that there are two dif-
ferent regimes with a phase change. The first regime is the under-parameterized

one, in which the actual dimension of the feature space is smaller than the inter-
polation threshold. In this setting there is a trade-off between accuracy, number

20



ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9.
Available from http://www.i6doc.com/en/.

0=5, a=0 6=5, a=0.0001
1.0 P - 1.0 -
- '
W L10% L1020
0.9 Y 0.9
|
z | >
g 0.8 \‘ g E 0.8 g
] \ k10120 g F10¥° O
< i < 0.7
\ .
0.7 v
0.6
0.6 £10%8 F10%®
10! 102 103 10! 102 103
Number of neurons Number of neurons
—&— Training Validation —#— Test accuracy — Interpolation treshold —®- Cond
Fig. 2: D&D dataset.
6=30, a=10000
1.0 *--% eee--0-—-9 F103%
L1034 0.90 4
"l L 1033
0.9 L10% 0.85 v
i r1o3
oy L1g3° 2 0801 ;
gos ‘é g ors \ —1029§
e} Q o V.70 1 (o]
g r102® g ‘.‘ L1027
0.7 0.70 1 |
1026 i L1025
. 0.65 1 .
0.6 A r102* e L1023
e-e-e-ee 0.60 1 | > Tetse_g
10t 102 103 104 10! 10? 103 104
Number of neurons Number of neurons
raining alidation est accuracy — Interpolation treshold —®- Con
—— T Validation —#— Test pol hold —®- Cond

Fig. 3: NCI1 dataset.

of neurons and error, typical of the classical bias-variance trade-off [3]. Note that
in this setting the Algorithmic Stability is, relatively, quite high. The second
regime is the over-parameterized one, which is the one after the interpolation
threshold, that is characterized by two new phenomena. The first one is that
the accuracy on the test set starts to increase even if the model is interpolat-
ing (double-descent or best-overfit behavior [3]) but in correspondence of the
interpolation threshold there is a change of phase in the Algorithmic Stability
which suddenly drops around this threshold and then generally continues to
decrease after the drop. In other words, Algorithmic Stability is able to tell us
that adding more neurons can actually improve generalization instead of hurting
it: in fact, in the over-parameterized regimes, accuracies increase while stability
decreases which is a clear sign of increasing generalization [3]. Figures 2 and 3

report, similarly to what reported in Figure 1 for the ENZYMES dataset, the
results of the D&D and NCI1 datasets.

From Figures 2 and 3 it is possible to
come up with the same observations derived for the ENZYMES dataset, con-

firming the empirical evidence that the Algorithmic Stability is able to explain,
and suggest, when over-parameterization can be beneficial for the generalization
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ability of neural models based on graph random features. Note also, that best
performances are not always reached with simple empirical risk minimization
and sometimes regularization (o > 0) is needed but the Algorithmic Stability is
always able to provide the necessary insights.

5 Conclusions

In this paper, we investigated the generalization abilities of over-parameterized
neural models based on graph random features. In particular, our aim was to
understand when over-parameterization, namely generating more features than
the ones necessary to interpolate, may be beneficial for the generalization of the
resulting models. For this purpose, we rely on the Algorithmic Stability frame-
work that together with empirical evidences from several commonly adopted
graph datasets helped us understand why more parameters can improve gener-
alization. Of course, this work is a preliminary but promising step in understat-
ing over-parameterized neural models based on graph random features and more
theoretical and empirical evidences need to be derived.
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