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Abstract. Student t-distributed stochastic neighbor embedding (t-SNE)
finds low-dimensional data representations allowing visual exploration of
data sets. t-SNE minimises a cost function with a custom two-phase gra-
dient descent. The first phase is called early exaggeration and involves
a hyper-parameter whose value can be tricky and time-consuming to set.
This paper proposes another way to optimise the cost function without
early exaggeration. Empirical evaluation shows that the proposed method
of optimization converges faster and yields competitive results in terms of
neighborhood preservation.

1 Effective visualization of data with t-SNE

High-dimensional (HD) data is abundant in our digital world, with medical
images, genomics, or financial transactions, to cite only a few examples. Most
of the time, the data records lie in HD spaces and dependencies or relationships
cannot be visualised directly by humans, turning intuitive understanding of HD
data sets into a challenging task. Dimensionality reduction (DR) tackles the
problem by providing their users with low-dimensional (LD) representations of
the data, enabling visual exploration.

Representing HD data into a less expressive LD space requires concessions as
information is usually lost in the process. Many families of DR algorithms exist,
each one focusing on the preservation of information of different nature; some
methods aim to preserve distances between points [1], others called neighbour
embeddings (NE) [2] attempt to preserve the local neighbourhoods around the
data points. Neighbour embedding is increasingly popular due to its capability
to mitigate the concentration of norms and distances [3] and the availability of
fast, approximate and yet accurate implementations [4, 5], making NE applicable
to very large data sets [6, 7].

Algorithms that carry out NE, such as Student t-distributed stochastic neigh-
borhood embedding (t-SNE) [8], usually minimise a cost function in a non-
parametric way, by adjusting iteratively the coordinates of the data points in the
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LD space with gradient descent. This optimization process can be interpreted
as a force-directed layout or mechanical system converging to equilibrium where
attractive and repulsive forces are exerted on pairs of LD points.

In practice, t-SNE and its variants come with custom implementations of gra-
dient descent, whose course is typically split in two successive phases, namely,
early exaggeration, a relatively short preliminary phase where the attractive
forces are deliberately amplified, followed by a longer second phase, where the
gradients come back to their genuine value and the LD coordinates are fine-tuned
with gradient and momentum. Intuitively, amplification of attractive forces in
early exaggeration contributes to momentarily shrinking the clusters and increas-
ing the inter-cluster gaps, to compensate for the otherwise local nature of NE.
Even if default settings are provided, the user can specify the length and factor
of force amplification in the early exaggeration phase [8, 9, 5]. This peculiar
hyper-parameter, coined early exaggeration after the phase it is active in, was
introduced in an effort to help the clusters move freely within the embedding
during the early iterations, by concentrating the sources of repulsive forces into
zones of tightly-packed points [8].

From the users’ broader perspective, data exploratory analysis is an inter-
active and possibly iterative process where the users select different subsets of
points, DR methods, and hyper-parameters in order to observe the data through
multiple virtual lenses. However, deciding on a value for the early exaggeration
amplification factor can be quite technical and hinders the overall visualisation
process by diverting attention from the data to the optimiser. This paper hence
proposes a new optimiser for t-SNE, which eliminates the need for early exag-
geration. It is compared to the standard t-SNE optimiser on 10 data sets. The
results show that the proposed optimiser achieves competitive neighbourhood
preservation and faster convergence. The experiments also support the claim
that the best values for early exaggeration can vary widely across different data
sets, when using the standard optimiser.

Section 2 provides an overview of the t-SNE algorithm. Section 3 introduces
the proposed optimisation method. Section 4 describes the experiments, reports
their results, and discuss them.

2 t-SNE with early exaggeration

This section briefly overviews t-SNE and the role of early exaggeration in its
optimisation.

Methods of NE such as t-SNE aim to preserve the neighbourhoods around
each data point; t-SNE [8] defines pairwise similarities in the HD and LD space
to model the neighbourhoods as smooth functions of the locations of the data
points X = [xi]1≤i≤N . Considering a data set of N points in the HD space, let
δij and dij be the pairwise distance between the ith and jth observations in the
HD and LD spaces, respectively, for i ∈ I = {1, ..., N} and j ∈ I \ {i}. The
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pairwise similarities σij and sij in both space are defined as

σ′
ij =

exp(−πiδ
2
ij/2)∑

k∈I\{i} exp(−πiδ2ik/2)
, σij =

σ′
ij + σ′

ji

2N
, sij =

(1 + d2ij)
−1∑

k∈I,l∈I\{k}(1 + d2kl)
−1

.

(1)

The similarity between a point and itself is set to 0 in both spaces. The precision
πi modulates the similarities to capture information relevant to a user-defined
scale. Embeddings are produced by minimising the mismatch between the HD
and LD pairwise similarities. As the similarities are normalized, they can be
interpreted as probabilities of the points to be the neighbor of one another. For
this reason, t-SNE defines the mismatch as the Kullback-Leibler (KL) divergence
Ct−SNE(X) =

∑
i∈I,j∈I\{i} σij log (σij/sij). Minimisation is carried out with

gradient descent.
Early exaggeration is an empirical tweak that consists in multiplying all HD

similarities with a constant greater than one during the first iterations of the
optimisation, typically one fifth or quarter of them. This changes temporarily
the cost function and its gradient, with an increased tendency of similar HD
points to group together in the LD embedding, because the similarities sij sum
up to 1 while the σij sum up to a larger value.

3 Proposed t-SNE optimizer, without early exaggeration

This section introduces the proposed optimisation method, which removes the
need for early exaggeration during the first phases of optimisation.

Early exaggeration aims to help the clusters in formation move inside the
embedding by accentuating the forces at hand and making the clusters smaller.
Without early exaggeration, data points in movement are more likely to en-
counter large groups of dissimilar points and be subject to barriers or large
fluctuations in the gradients. This paper proposes an alternative optimisation
method without early exaggeration, where a strong momentum compensates for
the occasional impeding forces, giving points enough inertia to pass the barrier
of local gradient fluctuations. This work also normalises the gradients before
updating the momenta.

The proposed method uses Nesterov’s momentum [10], which makes (non-
stochastic) gradient descent converge faster. If J denotes a cost function to be
minimised, θt a parameter at iteration t, vt its momentum, and ∇θJ(θ) the
gradient of J with respect to θ, Nesterov’s momentum update the parameter θt

following the pair of rules:

vt = γ · vt−1 − η∇θJ(θ
t−1 + γ · vt−1) ,

θt = θt−1 + vt .

The proposed optimiser uses a very strong momentum with γ = 0.995; the
learning rate η is set to 1.

In order to keep a steady learning rate across data sets of varied sizes, the

gradient ∇xi
Ct−SNE for each parameter xi is multiplied by

√
2N

100∥∇XCt−SNE∥2
be-

fore being used in the momentum update, as a normalization. Operator ∥·∥2
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denotes the L2 norm, while
√
2N is the norm of a unit vector of the same di-

mensionality as ∇XCt−SNE, and 1/100 is empirical. This scaling term yields
better experimental results and complies with the documented recommendation
of increasing the learning rate of t-SNE with the data set size [7, 6].

4 Experiments, Results, and Discussion

The classical, legacy optimizer of t-SNE and the proposed optimiser without
early exaggeration are here compared. The Barnes-Hut [4] acceleration of t-
SNE is used in both cases. The methods were tested on 10 data sets of size
N and dimensionality M [11]: airfoil self-noise (N = 1502, M = 5), abalone
(N = 4176, M = 8), COIL-20 (N = 1440, M = 1024), Statlog landsat satellite
(N = 4434, M = 36), Gaussian blobs (N = 1000, M = 25), forest cover
type (N = 3000, M = 54), Californian housing data set (N = 2500, M =
8), gesture phase segmentation [12] (N = 4000, M = 18), plant (N = 1000,
M = 4), Anuran (N = 4000, M = 22), and single-cell RNA-seq data from
the adult mouse cortex (N = 23822, M = 50). Some of the data sets are
random subsamples of larger data sets; the features in the RNA-seq data set
are the first 50 principal components of selected scaled gene expression levels,
as in [6]. The embeddings produced with and without early exaggeration are
assessed quantitatively using the area under the curve (AUC) of the relative
neighbourhood preservation RNX indicator [13]; the closer the AUC gets to 1,
the better the neighbourhood preservation.

The standard t-SNE optimisation relies on the default hyper-parameter val-
ues as specified in [9]; the perplexity is set to 30, the embeddings are initialised
with PCA, and the optimisation runs for 1000 iterations. For each data set,
regular t-SNE is run 12 times in total, as a grid search for the best combina-
tion of 2 learning rates and 6 early exaggeration factors. Early exaggeration
factor ee is picked in {1, 4, 8, 12, 16, 20}, while the learning rate is either 200 or
max(Nee , 50)}. The former value 200 is a common default value for the learning

rate, whereas max(Nee , 50) stems from works showing that greater learning rates
are preferable on large data sets [6, 7, 9].

Concerning the proposed method, it relies on the same perplexity and number
of iterations as the standard optimiser. It is also initialised with PCA whitening
and thus the initial embedding is scaled to have unit standard deviation along
both axes. The learning rate is set to 1 and there is no early exaggeration; no
grid search is necessary here and therefore one run per data set suffices.

Table 1 displays the area under the curve (AUC) of the RNX curve for both
optimisers on each dataset, with the best scores highlighted in bold face. For
the standard method, the AUC of the best run during the hyper-parameter
grid searches is shown along with the corresponding early exaggeration factor.
The results indicate that the proposed method performs competitively with the
legacy optimiser on the considered data sets. Furthermore, this experiment
emphasizes the time-consuming challenge of tuning the early exaggeration factor,
as the best values vary widely across different data sets.
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Data set Proposed opt. Legacy opt. Early exag.

blobs 0.324 0.324 4

forest 0.569 0.555 20

plant 0.694 0.677 20

Anuran 0.561 0.535 1

COIL20 0.671 0.663 1

Abalone 0.594 0.596 4

airfoil 0.671 0.688 1

satellite 0.577 0.560 1

housing 0.587 0.573 1

RNAseq 0.484 0.466 4

Table 1: AUC of the RNX curves for both optimizers across 10 data sets; the
best value of early exaggeration for the standard method is reported.

Figure 1 shows the evolution of cost function Ct−SNE(X)across the iterations
for both optimizers. The blue curves correspond to the legacy optimizer, with
early exaggerations of 4 and 1 in the leftmost and rightmost plots, respectively.
The orange curves correspond to the proposed method. At the 1000th itera-
tion, the KL-divergence between the HD and LD similarities is seen to be lower
with the proposed method than with the legacy optimiser for both data sets.
Moreover, the proposed method seems to stabilize much faster close to its final
arrangement.

The end of the early exaggeration is clearly visible at 250 iterations on the
blue curve of the leftmost plot. A slight change of regime can be observed on the
other plot as well, despite early exaggeration is set to 1 and hence turned off.
This break in the curve is due to a change in the momentum parameter carried
out in the standard implementation at the same time as the early exaggeration
phase ends.

Fig. 1: Evolution of the t-SNE cost function across iterations.
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5 Conclusions and outlook

This work proposes a new optimizer for the cost function of t-SNE, which frees
the users from tediously searching an optimal early exaggeration factor. The
legacy and proposed optimizers are compared, the latter producing competitive
results across 10 data sets. The proposed optimisation method remains to be
tested on very large data sets, which is the aim of further works.
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