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Abstract. Evolution Strategies (ES) have emerged as a powerful and ef-
fective method for optimization and reinforcement learning tasks, largely
due to their simplicity and scalability. However, current ES techniques
can be limited in their capacity to quickly converge on the optimal so-
lution. In this paper, we propose a novel approach to enhance ES by
incorporating an evolution path-informed bias in the Gaussian mutation
operator. This bias is designed to facilitate faster descent on decreasing
functions. Our method leverages the evolution path, which represents the
historical search directions, to intelligently bias the Gaussian mutation.
By doing so, it enables the algorithm to be more sensitive to the underly-
ing function’s structure and adaptively exploit this information for more
efficient exploration. We validate our approach through experiments on
three benchmark functions: a linear function, we call Downhill function
here, a Parabolic ridge, and a Sphere function. The results demonstrate
that our evolution path-informed bias significantly accelerates convergence
on in most of the cases.

1 Introduction

Evolution Strategies (ES) have emerged as powerful optimization techniques for
tackling continuous optimization problems due to their robustness, simplicity,
and adaptability. These strategies are based on the principles of natural selec-
tion and genetic variation, and have been successfully applied to a wide range of
complex real-world problems. One of the three main design principles of ES sug-
gests that mutation operators should not exhibit any bias to ensure an unbiased
exploration of the search space. However, studies have shown that introducing
bias in mutation operators can be advantageous in certain situations and lead
to improved convergence and exploration capabilities[5].

In this paper, we propose an enhanced (1, λ)-ES that combines the use of
evolution paths and biased mutation operators to improve the performance of the
algorithm on a set of ridge functions. Ridge functions are a class of optimization
problems that exhibit a narrow and elongated global optimum region, which
pose a significant challenge for optimization algorithms. The approach aims to
harness the benefits of biased mutation operators while exploiting the guidance
provided by the evolution path to effectively explore and converge to the global
optimum.
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The remainder of the paper is organized as follows: Section 2 will discuss the
role of biased mutation operators in evolution strategies. Section 3 will focus on
the biased mutation operator based on evolution paths. Section 4 will present
an experimental analysis. Finally, Section 5 will conclude the paper with a
summary of the findings and suggestions for future research directions.

2 ES and Biased Mutation

ES can be characterized by their population size and selection mechanisms.
One of the widely used variants of ES is the (1, λ)-ES, which has a parent
population size of one and an offspring population size of λ. The algorithm
iteratively produces offspring by mutating the parent solution and selecting the
best individual from the offspring population to replace the parent in the next
generation.

The (1, λ)-ES incorporates a mutation rate control mechanism to adaptively
adjust the step size during the optimization process. Rechenberg’s 1/5th success
rule is a popular approach for mutation rate control in (1, λ)-ES. According to
this rule, the step size is increased if the success rate of generating better offspring
is higher than 1/5th and decreased otherwise. This adaptive control mechanism
allows the algorithm to balance the exploration and exploitation trade-off effec-
tively. In our biased mutation ES we implement the rule by increasing the step
size by exp(1/λ) in case of success and decreasing it by exp(−1/5) otherwise
notated as:

σ := σ · exp([1/λ] ∨ [−1/5]) (1)

Despite the general design principle in ES suggesting that mutation operators
should not introduce any bias, research has shown that biased mutation op-
erators can be beneficial in specific situations. Biased mutation operators can
improve the exploration and convergence properties of an optimization algorithm
by guiding the search process towards promising regions of the search space. In
this section, we discuss different types of biased mutation operators and their
potential advantages.

A Gaussian biased mutation operator introduces a bias in the mutation by
sampling from a Gaussian distribution with a non-zero mean. The non-zero
mean represents the direction of the bias, and the standard deviation determines
the magnitude of the bias. This type of biased mutation operator can effectively
guide the search process when the problem exhibits a known gradient or structure
that can be exploited. Biased Gaussian mutation has been implemented in a
self-adaptive variant for unconstrained [4] and contrained problems [5].
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3 Incorporating Evolution Path Bias in Gaussian Muta-
tion

3.1 Evolution Path

Non-local information about the population can improve optimization perfor-
mance by guiding the search process towards promising regions in the search
space. An evolution path, denoted by s, is a generational record of step sizes
employed during the optimization process, which serves as a source of non-local
information [6, 3, 1]. The evolution path, also known as the cumulative path
length, can provide insights into the correlation of search directions, thereby
enabling more informed mutation steps.

short evolution path long evolution path

start end

Fig. 1: Principle of evolution path in space of z-mutations.

In the context of the (1, λ)-ES with Gaussian mutation, the evolution path
s is updated using the successful mutation vector zk. The update rule for the
evolution path is:

s := (1− c) · s+ c · zk (2)

with c balancing between the past directions and the current. This update
rule ensures that information from previous steps is not lost, and the correlation
of directions zk determines the length of the path s. Single steps pointing in
similar directions will increase the path, while opposing directions will shorten
the path, as illustrated in Figure 1. In CMA-ES [2] and cumulative path length
control ES [6, 3, 1], the path length |s| is used to determine a global step size σ.

3.2 Biased Gaussian Mutation with Evolution Path

In this paper, we propose to incorporate the evolution path as a bias in Gaussian
mutation. The biased Gaussian mutation equation is given by:

xk = x+ σ · (γ · zk + (1− γ) · s) (3)
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Here, xk is a mutated solution, x is the original solution, σ is the step size,
zk is the Gaussian random vector sampled from N (0,1), and s is the evolution
path. Parameter γ weighs the generated random vector and the bias.

By incorporating the evolution path as a bias in the Gaussian mutation, our
proposed method aims to exploit the non-local information and correlations in
the search directions to improve the convergence and exploration properties of
the (1, λ)-ES.

Algorithm 1 provides a pseudocode implementation of the proposed method,
which combines the evolution path update and biased Gaussian mutation for
enhancing the performance of the (1, λ)-ES. Step size σ is controlled using a
per-generation update variant of the Rechenberg 1/5 rule defining success.

Algorithm 1: Biased (1, λ)-ES

1: given c ≈
√
1/(N + 1)

2: initialize s = 0, σ ∈ RN
+ ,x ∈ RN

3: repeat
4: for k ∈ {1, . . . , λ} do
5: zk = N (0,1)
6: xk = x+ σ · (γ · zk + (1− γ) · s)
7: end for
8: (x, z)← select best of {(xk, zk)|1 ≤ k ≤ λ}
9: σ := σ · exp([1/λ] ∨ [−1/5])

10: s := (1− c) · s+ c · z
11: until termination condition

4 Experiments

We conducted experiments for each benchmark function in 20 and 100 dimen-
sions, with 100 repetitions to assess the robustness and consistency of the pro-
posed ES, see Appendix A. The results were compared with a traditional (1, λ)-
ES without biased mutation. The parameters for both algorithms were initialized
as follows:

Population size λ = 10 ·N , initial step size σ = 1.0, per generation mutation
rate control with τ = 1/λ, and the biased Gaussian mutation operator.

To evaluate the performance of the algorithms, we used the best objective
function value found during the evolutionary run after 1000 fitness function eval-
uations. The experimental results were analyzed using the Wilcoxon rank-sum
test to assess the statistical significance of the observed differences in perfor-
mance between the proposed ES with biased mutation operators and the tradi-
tional (1, λ)-ES.

The results indicate that the proposed ES with biased mutation operators
outperforms (↑) the traditional (1, λ)-ES in four of six cases in terms of mean
fitness. On the Downhill function with N = 20 the advantage was not signif-
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Non-biased (1, λ)-ES
Function 20D 100D
Downhill -3.6e5 ± 2.6e3 -5.5e5 ± 179.1
Parabolic −356.1± 9.40 −86.8± 3.12
Sphere 9.8e-51 ± 2.6e-50 5.2e-20 ± 5.6e-20

Biased (1, λ)-ES
Function 20D 100D
Downhill -3.6e5 ± 2.2e3 -5.5e5 ± 194.8 ↑ ✓
Parabolic −649.1± 19.31 ↑ ✓ −132.6± 4.96 ↑ ✓
Sphere 1.9e-56 ± 1.2e-55 ↑ ✓ 2.2e-17 ± 3.1e-17 ↓ ✓

Table 1: Experimental results comparing the biased (1, λ)-ES and the non-biased
(1, λ)-ES with γ = 0.5. The arrows indicate improvement ↑ or deterioration ↓ ,
while ✓indicates statistical significance.

icant, while on the Sphere with N = 100 the unbiased (1, λ)-ES was superior.
The Wilcoxon test confirms that the observed improvements are statistically
significant in five cases, marked with ✓.

These findings demonstrate the effectiveness of incorporating biased mutation
operators with evolution paths in enhancing the performance of ES algorithms
on challenging optimization problems, such as ridge functions and the Sphere
function.

5 Conclusions

In this paper, we investigated the incorporation of biased mutation operators,
specifically using the evolution path, to enhance the performance of ES for con-
tinuous optimization problems. We proposed a method that combines the (1, λ)-
ES with biased Gaussian mutation using the evolution path as a source of non-
local information.

Our experimental results, obtained by testing the proposed method on three
benchmark functions across different dimensions, demonstrated that the evolu-
tion path-based bias in Gaussian mutation outperforms the traditional (1, λ)-ES
on the Downhill and ridge function, while causing no harm on the Sphere func-
tion. The improvements in terms of best fitness, median fitness, and convergence
rate were statistically significant, as confirmed by the Wilcoxon rank-sum test.

As future work, we suggest exploring other biased mutation operators and
investigating their potential advantages in different problem domains. Further-
more, the proposed method could be extended to other variants of ES or com-
bined with other optimization techniques to create hybrid algorithms with im-
proved convergence and exploration properties.
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A Benchmark Functions

The selected benchmark functions are defined as follows:
Downhill function:

f1(x) = −
N∑
i=1

xi (4)

Parabolic ridge:

f3(x) = x2
1 +

N∑
i=2

(xi − x1)
2 (5)

Sphere function:

f4(x) =
N∑
i=1

x2
i (6)

In these functions, x = (x1, x2, ..., xN ) is the decision variable vector, N is the
number of dimensions.
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