ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9.
Available from http://www.i6doc.com/en/.

On the number of latent representations
in deep neural networks for tabular data

Edouard Couplet!, Pierre Lambert!,
Michel Verleysen®, John A. Lee?!, Cyril de Bodt! *

1-UCLouvain - ICTEAM/ELEN 2-UCLouvain - IREC/MIRO

Abstract. Most recent deep neural network architectures for tabular
data operate at the feature level and process multiple latent representa-
tions simultaneously. While the dimension of these representations is set
through hyper-parameter tuning, their number is typically fixed and equal
to the number of features in the original data. In this paper, we explore the
impact of varying the number of latent representations on model perfor-
mance. Our results suggest that increasing the number of representations
beyond the number of features can help capture more complex interac-
tions, whereas reducing their number can improve performance in cases
where there are many uninformative features.

1 Introduction

To date, ensemble models based on decision trees such as XGBoost [1] still
outperform deep learning (DL) models on tabular data in supervised tasks [2].
However, DL remains attractive, notably for building differentiable multi-modal
pipelines in domains such as healthcare or robotics which require integrating
data, including tables, from a wide variety of sources [3]. As a consequence, a
growing number of deep learning models for tabular data have been proposed in
the past few years. We can classify these models into two categories: those that
operate at the sample level and those that operate at the feature level. Most
recent models fall within the latter category and are based on Transformers
[4, 5, 6] or even Graph Neural Networks (GNNs) [7]. Unlike standard Multi-
layer Perceptrons (MLPs) which use one latent representation per sample, these
models use one latent representation per feature: a token in case of transformers,
a node vector in case of GNNs. While this enables easier interpretation in terms
of contextual embeddings, the choice of using one representation per feature is
arbitrary and, as empirically shown in this work, may not be optimal in terms
of prediction performance. This paper hence investigates how the number of
latent representations affects the performance of DL models on tabular data.
We first provide, in Section 2, a general definition of a neural network model for
tabular data. In Section 3, we build upon this definition for designing a simple
and generic feature-level architecture. In Section 4, we test this architecture on
several datasets and discuss how performance is affected by varying the number
of hidden representations. Finally, Section 5 draws conclusions and outlines
directions for future research.

*EC is supported by a FSR grant (UCLouvain). PL is a FRIA grantee of the F.R.S.-FNRS.

JAL is a Research Director with the F.R.S.-FNRS. CdB is supported by Service Public de
Wallonie Recherche under grant n2010235-ARIAC by DIGITALWALLONIA4.AI

399

ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9.
Available from http://www.i6doc.com/en/.

2 Neural network feature-level model for tabular data

This work focuses on supervised learning tasks. A data set is denoted X =
{(x®, @2 where xH = (xgi),xgi), ...,337(7?) € X represents the features of
the ith sample and (¥ € Y is the sample label. We consider two types of tasks:
binary classification if Y = {0, 1} and regression if Y = R. We formulate the task
of label prediction as an encoding-decoding problem and propose the following
general feature-level model for tabular datal:

y = py(pool(¢e(f(x)))) ,

where f(-) is the pre-encoder, ¢g(-) is a neural network encoder parameterized
by 6 and py(-) is a neural network decoder parameterized by .

A defining characteristic of tabular data is that the feature space does not
need to be homogeneous: for two given features z; € X; and z; € X; we
usually do not have X; = X;/. In particular, we may have a mix of numerical
and categorical features. However, a standard neural network only takes vectors
of real numbers as input, so we first need a pre-processing step to encode each
feature z; with a specific function f; : X; — R%. When working with sample-
level models, we typically concatenate all encodings f;(x;) into a single sample
representation. When working with feature-level models, we project all features
Z; in a common space R? and we keep a separate vector representation for each
feature. We define f : X — R¥>*™ as f(x) = (f1(x1), f2(22), s frn(Tm))-

The goal of the encoder is to learn an appropriate representation of the data,
enabling accurate label predictions by the decoder. It is a neural network with an
input layer ¢g : R¥*™ — R%*mo and [hidden layers ¢y, : R%-1%mk-1 _ Rk Xm0
such that ¢ = ¢; 0 ¢;_1 0...0¢1 0 ¢g. The final m; representations learned by
the encoder are aggregated together via a pooling operator into z € R%.

The decoder is another neural network p : R%* — Y with p(z) = ¢, where ¢
is the predicted label for a given sample x.

While the decoder is most often composed of one or two fully connected linear
layers with appropriate nonlinear activations depending on the task, what really
differentiates recent deep learning models for tabular data is the design of the
hidden layers in the encoder. For instance, [5] uses transformer blocks with multi-
head attention, [4] also uses transformer blocks but with an additional inter-
sample attention mechanism, [6] uses transformers with attention coefficients
computed based on a feature graph, [7] uses graph message passing convolutional
layers instead, etc. A shared aspect of all these models, however, is that the
dimension my, of the hidden layers is always equal to m, the number of features
in the original data. Although this allows for a nice interpretation of hidden
representations as contextual feature embeddings, one may wonder whether my
must necessarily be fixed to m? We then ask the following question: how does
taking values of my > m or my < m affect the performance of feature-level
models on tabular data?

1The chosen vocabulary and notations originate in the literature on deep sets and graph
neural networks.

400

ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9.
Available from http://www.i6doc.com/en/.

3 A simple feature-level architecture

To carry out our investigation, we design a simple and generic feature-level ar-
chitecture for tabular data. This architecture is depicted in Fig. 1.
The pre-encoder is defined feature-wise; for a given feature index j, we have:

. gaussianize(- if j is numerical
fi(-) =pad (g;(-)), with g;(-) = { one—hot-enc(ozie(-) if j is categorical
where gaussianize(-) applies a quantile transformation such that the jth fea-
ture follows a normal distribution, one-hot-encode(-) transforms its input into
a binary vector, and pad(-) appends zeroes to the obtained encoding such that
>_; fi(z;) = concatenate; (g;(z4))T for a given sample x. The encoder ¢ is com-
posed of three layers. It takes as input e = f(x) and outputs hy = ¢(e). The
input layer ¢¢ can be interpreted as a static embedding layer. The two hid-
den layers ¢ and ¢ first combine latent feature representations linearly, then
apply the same nonlinear transformation to all new combined representations.
To reduce the number of hyper-parameters, the dimension of the latent space is
constant: dy = dy = dy = d’, as well as the number of latent representations in
both hidden layers: m; = mq = m’ with m’ not necessarily equal to the number
m of original features. The equations for each layer are then:

ho = ¢o(e) = ReLU(Wpe + bo1”) (1)
hy = ¢ (ho) = ReLU(Wlflo + b;]_T) with flo =hoA; (2)
hy = ¢3(h;) = ReLU(W5hy + by17) with h; = h; A, (3)

where Wy, by, and Aj, are trainable parameters and 1 is a vector of d’ ones. The
pooling operator is simply a sum : z = Z;’il ha;. The decoder takes z as input
and outputs a label prediction g. It consists of a unique linear layer: § = Waz.
For regression tasks, we minimize the mean square error. For classification tasks,

we add a sigmoid activation function and minimize the binary cross entropy.

num{@ f() Po(-) I ¢1(-) I ¢2(+) I z p(-) =

x € X e € R™™ hy € R h; € R h, € R zeRY jey

Fig. 1: Generic feature-level architecture for tabular data. Equations for com-
puting latent representations e, hg, hi, ho, z, as well as the final prediction g are
detailed in the main text of Section 3.

401

ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9.
Available from http://www.i6doc.com/en/.

4 Experiments and discussion

This section evaluates the performance of our generic architecture on 12 different
data sets and discusses how it is affected by m’, the number of latent represen-
tations. The data sets all come from the benchmark introduced in [2]. We
consider both regression and classification tasks, as well as data sets with both
categorical and numerical features. For the pre-encoder, we use ScikitLearn’s
OneHotEncoder and QuantileTransformer. We fix d’ to 128 and test the fol-
lowing values for m’ : {1,2,4,8,16,32,64,128} U {m}. We also compare our
architecture to a standard sample-level MLP with a latent space of dimension
192, such that the MLP always has more parameters than our architecture. We
split the data into training and test sets (70% and 30%, respectively). We use
a batch size of 256 and train each model for a maximum of 100 epochs, using
early stopping with a patience of 20. We repeat these operations for each data
set using 20 different random seeds. The averaged test results are reported in
Fig. 2. For classification tasks, we look at the test accuracy; for regression tasks,
at the R2 score. For easier interpretation, we multiply each score by 100 and
display the relative performance with respect to the case m’ = m.

bank-marketing (C) m=7 wine quality (R) m=11 sulfur (R) m=0
2 2 2
1 14 1
79.29 36.14 8212
0 0 0
-1 —14q —1
5 ol S _ /\
1 2 1 8 16 32 61 128 1 2 1 8 16 32 61 128 1 2 1 8 16 32 61 128
superconduct (R) m=T9 california (R) m=28 clectricity (C) m=8

89.93 8173 6l
0o 0 __/—-\/\ 0 /—-—"/—
)

1 2 1 8 16 32 64 128 1 2 4 8 16 32 64 128 1 2 4 8 16 32 64128

Relative test score with respect to the case m' = m

eve movements (C) m=123 KDDCup09 upselling (C) m=15 1) m=12
24 24 2
14 14 1
RE 7 ’ 68.09
~14 —14 -1
—2 —2 90090
1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128
compass (C) m=17 Bike Sharing Demand (R) m =11 house sales (R) m =17
24 o 24 2
14 . 14 1
93.18
04 G 0 f 0 -
1 1477 -1
9 2 —2)
1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128

Number of latent representations m'

Fig. 2: Relative performances of our feature-level architecture on various data
sets, for varying values of m/. We display the absolute scores (x100) for the
case m’ = m (green) and the MLP (magenta). C stands for classification, R
for regression, m for the original number of features and m’ for the number of
latent representations.

402

ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9.
Available from http://www.i6doc.com/en/.

We observe several kinds of behaviors as the number of latent representa-
tion m’ varies: (a) performance increases when increasing m/, (b) performance
increases when decreasing m/, (¢) performance decreases for m’ > m and for
m’ < m, and (d) performance stays approximately the same for different values
of m’. Additionally we observe that (e) in general, the feature-level architecture
outperforms the standard sample-level MLP. We formulate two hypotheses to
explain our observations:

Hypothesis 1 A higher number of latent representations makes a model more
expressive and allows to capture more complex feature-target relationships.

Hypothesis 2 A higher number of latent representations makes a model more
sensitive to uninformative features, which are common in tabular data [2].

In fact, (a) would correspond to cases where the feature-target relationship
can be better approximated with a higher m’ and where there are not too many
uninformative features; (b) to cases where there are a significant proportion
of uninformative features but the feature-target relationship can still be well
captured with a low m’; (¢) to a similar case but where the feature-target rela-
tionship is too complex to capture with a low m’ such that performances also
decrease as m’ decreases; (d) to simpler cases where there are no uninformative
features and the feature-target relationship is well captured for any m’, or to in-
between cases where the effects of uninformative features and complexity of the
feature-target relationship cancel out. Finally, (e) suggests that a sample-level
MLP behaves like a feature-level architecture with a high m': it is thus more
sensitive to uninformative features, with the major drawback that it has much
fewer degrees of freedom for reducing this sensitivity without compromising ex-
pressiveness.

We conduct an additional experiment to verify whether our hypotheses are
plausible. We consider the compass data set that, based on the previous results,
has few uninformative features and a feature-target relationship that is best
captured with higher values of m’, as in situation (a). We add to this dataset m
random uninformative features and conduct the same experiment as described
above. Figure 3 displays the results. We observe that the behavior of the
model completely changes with a more important proportion of uninformative
features: now reducing m enables to significantly increase accuracy, suggesting
less sensitivity but still some level of expressiveness (more like situation (b)).
This is in line with our hypotheses; more in depth experiments will be conducted
in further works to provide stronger evidences.

compass (C) m=17 compass + random (C) m=34

71.65
11 19
65.49
04 04
70.62
14 i

, 16339

Relative score

1 é ‘l é 1'6 3‘2 6'! 128 1 é 'l é 1'6 3‘2 6'1 128
Number of latent representations m'

Fig. 3: Performances of our feature-level architecture on the compass data set,
with and without the addition of uninformative features.

403

ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9.
Available from http://www.i6doc.com/en/.

5 Conclusion and perspectives

This work investigates the impact of the number of latent representations in deep
neural networks for tabular data. We show that having one representation per
feature of the original data may not be optimal and adjusting this number based
on task complexity and the proportion of uninformative features can enhance
model performance. Interestingly, in cases with many uninformative features,
performance can be improved by reducing the number of latent representations,
suggesting a kind of regularization phenomenon. This could have important
implications for tasks involving high dimensional data, where the number of
latent representations raises computational limitations. An intriguing research
direction would be to quantitatively define the concepts of ”task complexity” and
”uninformativeness of a feature” in the context of tabular data and explore more
in detail their relationship with model performance. By doing so, the number
of latent representations could potentially be set a priori, reducing the need
for expensive hyper-parameter tuning. A related research direction would be
to investigate also the relationship with latent space dimensionality; this would
help build neural networks that are better suited to the data they intend to
model.

References

[1] Tiangi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings
of the 22nd acm sigkdd international conference on knowledge discovery and data mining,
pages 785-794, 2016.

[2] Léo Grinsztajn, Edouard Oyallon, and Gaél Varoquaux. Why do tree-based models still
outperform deep learning on typical tabular data? In NeurlPS 2022 Datasets and Bench-
marks Track, Advances in Neural Information Processing, New Orleans, United States,
November 2022.

[3] Vadim Borisov, Tobias Leemann, Kathrin SeSler, Johannes Haug, Martin Pawelczyk, and
Gjergji Kasneci. Deep neural networks and tabular data: A survey. IEEE Transactions
on Neural Networks and Learning Systems, 2022.

[4] Gowthami Somepalli, Micah Goldblum, Avi Schwarzschild, C Bayan Bruss, and Tom Gold-
stein. Saint: Improved neural networks for tabular data via row attention and contrastive
pre-training. arXiv preprint arXiw:2106.01342, 2021.

[5] Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep
learning models for tabular data. Advances in Neural Information Processing Systems,
34:18932-18943, 2021.

[6] Jiahuan Yan, Jintai Chen, Yixuan Wu, Danny Z Chen, and Jian Wu. T2g-former: Or-
ganizing tabular features into relation graphs promotes heterogeneous feature interaction.
arXiv preprint arXiw:2211.16887, 2022.

[7] Mario Villaizdn-Vallelado, Matteo Salvatori, Belén Carro Martinez, and Antonio
Javier Sanchez Esguevillas. Graph neural network contextual embedding for deep learning
on tabular data. arXiv preprint arXiv:2303.06455, 2023.

404

	AllPapers
	Thursday
	ES2023-156-2

