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Abstract. Hyperspectral imaging is a suitable measurement tool across
domains. However, when combined with machine learning techniques,
frequently intensity and transversal shifts hinder the transfer between dif-
ferent sensors and settings. Established approaches focus on eliminating
sensor shifts in the data or recalibrating sensors. In this contribution, we
target the training procedure, propose robust training, and derive a robust
feature selection strategy that can cope with multiple shift dynamics at
the same time. We evaluate our approaches experimentally on artificial
and real-world datasets.

1 Introduction

Hyperspectral imaging constitutes a powerful tool across various domains. For
example, it is used in quality control in food production and pharmaceutical
applications, precision agriculture, environmental analysis and earth observa-
tion, water resource management, medical diagnosis, and artwork and forensic
document analysis [1, 2]. The usage of this technology will further expand with
the increasing availability of low-cost sensors. Frequently, data collection by
this technology is paired with machine learning techniques to make sense of the
obtained high dimensional spectral signatures [3]. While machine learning is
a successful tool in many use cases, applying it to hyperspectral data collected
across different sensors poses significant challenges. Transferring a model trained
on the data collected by one sensor to the data measured by another one, usu-
ally a strong decline in the accuracy of the model is observed. This is caused
by distributional shifts between the sensor measurements which are commonly
caused by slight differences in the physical components in the sensors, or due to
aging components over time [4].

Recent work analyzed these sensor shifts and proposed a categorization into
so-called intensity and transversal shifts where the intensity shift is an additive
offset while in transversal shifts the measured spectral bands differ across sensors
or over time [4]. These shifts can decrease the performance of machine learning
models and – in extreme cases – render them useless. Basically, there are three
main options to handle this problem: (i) retraining the ML model, (ii) eliminat-
ing the sensor shift in the data before training and inference, and (iii) developing
robust models as we propose in this contribution. Retraining the model in case
of sensor shifts requires ground truth information. Obtaining this kind of in-
formation for a new sensor which should be deployed is usually a costly and
labor-intensive task if even possible and thus ruling out option (i). [4] proposed
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a set of strategies to eliminate intensity and transversal shifts from hyperspec-
tral data. In contrast to the retraining strategy, no ground truth information
is required for this realization of option (ii). However, the same class distribu-
tion across all sensor measurements is expected to obtain robust mean spectral
signatures which are the basis for the proposed techniques. Besides, intensity
and transversal shifts are considered individually which limits the practical ap-
plication, as both types of shifts might be present in unknown magnitudes in
real-world data.

In this work, we focus on option (iii) and target the training procedure. For
this purpose, we first analyze the influence of intensity and transversal shifts on
model robustness. Afterward, we propose a robust training strategy and derive
a feature selection strategy from an analysis of the effects of transversal shift
on the data measurements. While it has been shown that robust training can
improve the transferability for instance in deep learning [5], to the best of our
knowledge its effect and efficient realization has not been investigated in the
setting of transversal and intensity shift in hyperspectral data. Our approaches
are evaluated experimentally on artificial and real-world data.

2 Intensity and Transversal shift in Hyperspectral Data

We can describe the spectra in a functional form X : R → R, where wavelengths
lj are mapped to intensities X(lj). As the spectra can only be observed at a
finite number of bands, we obtain samples xi ∈ Rd where components of xi

correspond to observations xi(L) := (xi(l1), . . . , xi(ld)) at a set of wavelengths
L = (l1, . . . , ld). A sensor-specific number of wavelengths are measured resulting
in data of dimensionality d. Prior work [4] showed, that in case of large d
selecting a subset of these features as a preprocessing is suitable to reduce the
curse of dimensionality [6].

As described before, distributional shifts over time or between sensors have
to be expected. There are two types: Intensity shift corresponds to a func-
tion Sv : R → R which is added to each spectrum xi, yielding signals of
the form xi + Sv with finite-dimensional observation vector (xi + Sv)(L) =
(xi(l1) +Sv(l1), . . . , xi(ld) +Sv(ld))). Transversal shift corresponds to a strictly
monotonically increasing function Sh : R → R which affects the wavelengths,
i.e. the domain X, yielding the signal Sh ◦ xi with finite-dimensional observa-
tion vector Sh ◦ xi(L) = xi(Sh(L)) = (xi(Sh(l1)), . . . , xi(Sh(ld))) [4].

3 Datasets

In this contribution, we consider a dataset containing the hyperspectral signa-
tures of Arabica, Robusta, and immature Arabica coffee beans. The dataset
was collected by three similar but different sensors from the same manufacturer.
The S2 and S3 are from the same production series. The models measure 256
to 288 spectral bands in the intensity of 950 nm to 2500 nm. In order to have
data in the same dimensionality, the data has been linearly interpolated. The
final dataset contains 75 954 samples with 1500 features each. The sensor-wise
mean spectra of the dataset are visualized in Fig. 1. One can clearly see an
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Fig. 1: Visualization of the sensor-wise mean spectra of the Coffee dataset

intensity shift between the measurements of the S1 and the other two sensors.
Additionally, when zooming in, the presence of an additional transversal shift
of the S2 in the data becomes apparent. For our experiments, a subsampling of
the data to 50 equally spaced bands is performed as in [4].

To better analyze the influence of intensity and transversal shift, we addi-
tionally generate artificial datasets with isolated shifts of increasing magnitudes.
The datasets are based on the original measurements of S2. For the intensity
shift, we simulate a smooth additive offset in varying magnitudes. In contrast,
for the transversal shift, we rely on reported transversal shifts and artificially
increase their magnitudes. Finally, we consider combined shift by adding an
intensity offset to the transversally shifted datasets.

4 Robustness under sensor shifts

Analyzing the effect of the intensity and transversal shift, we train our model on
the original measurements of S2 and evaluate on the artificially shifted datasets.
Based on prior experiments, we choose a logistic regression with L2 regulariza-
tion1. The hyperparameters were tuned on the unshifted dataset. We perform
10-fold cross-validation. The results of our experiment are visualized in Fig. 2.
One can clearly see that the model is robust to moderate intensity shifts. In
contrast, it strongly suffers from transversal shifts.

Considering the real-world Coffee dataset, we train a model on each sensor
and evaluate it separately on the data of each sensor. Summarizing the results
in a matrix, we obtain a confusion matrix-like result representing the training
in the rows and the sensor used for testing in the columns. The results are
summarized in Fig. 3. As expected, we observe high accuracies on the diago-
nal where no transfer happens. Considering the transfer scenarios, we obtain a
much better transfer between sensors S1 and S3 than between S2 and the other

1Note that other linear models performed very similarly but yielded slightly worse scores,
as discussed in [4].
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Fig. 2: Performance of classifiers for increasing shifts
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Fig. 3: Results of the experiments on the Coffee dataset

sensors. In contrast, transfer scenarios that include S2 result in worse accura-
cies. Reconsidering the shift analysis (see Fig. 1), this supports our previous
finding that the considered model is more robust with respect to intensity than
transversal shift. As we identified transversal shifts as the main challenge, we
propose robust training procedures mainly targeting this type of shift in the next
section.

5 Robustifying Training

Robust Training: Robust training is an established scheme in deep learning [7].
Usually, deep neural networks are trained with noisy data or adversarial exam-
ples to avoid overfitting and ensure robustness against different types of attacks.
In our setting, the goal is to train a model that is robust in the presence of sen-
sor shifts. Thus, we propose to enrich the training data with transversal shifts,
whereby we rely on very simple data-independent instantiation of the shifts.
We enrich the training set with transversally shifted versions of the spectra, e. g.
each wavelength is shifted by the same factor: Sh : R → R, Sh(lj) = lj+ν. Thus,
we obtain additional spectra Sh◦xi(L) = xi(Sh(L)) = (xi(l1+ν), . . . , xi(ld+ν)).
An analysis of the Coffee dataset, further datasets measured with similar sen-
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sors, and the recalibration reports indicate that average absolute transversal
shifts of about ν = 3nm are expected. Therefore, for our training we choose
ν ∈ {−3,−2,−1, 1, 2, 3}. Similarly, there is the option to enrich the data with in-
tensity shifts Sv(l) = δ, where we choose δ = 0.05 as we observed intensity shifts
of this magnitude in real-world data (see Fig. 1). We refer to these strategies as
rob. tr. and rob. int. in the experiments.

Robust feature selection: In addition to this robust training scheme, we propose
a robust feature selection strategy that can be combined with the robust training
strategies: On a data level, transversal shift results in changes in the intensity
values. However, in contrast to relatively stable and smooth intensity shift, the
magnitude of changes caused by transversal shift does not only depend on the
size of the transversal shift but also on the spectra: as defined in Section 2, the
intensity of xi at measurement band j under transversal shifts can be formalized
as follows: x′

i(lj) = xi(Sh(lj). Note that the change in the measured value
depends both on the magnitude of the transversal shift Sh(lj) and the local
properties of xi around wavelength lj . Considering the spectra plotted in Fig. 1,
a transversal shift at band 2100 would lead to much less change in the intensity
than a transversal shift of the same size at band 1450. We cannot control
the transversal shift in the data, but we can control its impact by choosing our
features accordingly. Bands with little local intensity differences in the measured
material will cause smaller intensity changes given transversal shifts. To measure
the local intensity differences on the discrete vectorial data representation, we
rely on local differences ∆(lj) =

1
2η |x̄(lj−η)−x̄(lj+η)| with x̄ being the datasets

mean spectral signature and η the distance between measurements points in the

given datasets. For the training, we only select {lj | ∆(lj) < α
L

∑L
j=1 ∆(lj)}

where α is a dataset specific hyperparameter. We refer to this strategy as r.f.s.

Results: We evaluate the proposed methods and their combinations on both
artificial and real-world data2. The results of the isolated transversal and in-
tensity shift are visualized in Fig. 2. While applying robust training, robust
feature selection, and its combinations improve the vanilla performance under
transversal shift, we observe a stronger decline for increasing intensity shifts.
Especially the combination of feature selection and transversal robust training
greatly improves the accuracy for large transversal shifts.

As we expect a combination of transversal and intensity shifts in many real-
world applications, we additionally evaluate the methods on artificial datasets
containing both shifts in varying magnitudes. The results are summarized in
Fig. 4. In the vanilla setting, we observe a significant decline for increasing
shift magnitudes. Transversal Robust training increases the accuracy mainly
for scenarios with significant transversal shifts. In contrast, combining robust
feature selection with intensity robust training yields a good compromise overall
considered settings.

Finally, considering the real-world dataset, as summarized in Fig. 3, we can
confirm the findings from the theoretical datasets. Again, the robust feature
selection yields considerable accuracy increases of up to 0.2 for transversal shifts.

2Our code is available at https://github.com/vvaquet/hyperspectral-sensor-shifts

93

ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9. 
Available from http://www.i6doc.com/en/.

https://github.com/vvaquet/hyperspectral-sensor-shifts


0.0 0.05 0.1 0.15 0.2 0.25

0
2

4
6

8
1
0

1
2

1
4

1
6

1
8

2
0

0.94

0.9

0.81

0.69

0.57

0.48

0.43

0.4

0.37

0.36

0.35

0.93

0.93

0.86

0.76

0.64

0.53

0.46

0.42

0.39

0.37

0.36

0.89

0.93

0.9

0.82

0.71

0.59

0.5

0.44

0.41

0.38

0.37

0.83

0.91

0.92

0.87

0.77

0.65

0.55

0.48

0.43

0.4

0.38

0.77

0.86

0.91

0.9

0.83

0.72

0.61

0.52

0.46

0.42

0.39

0.71

0.81

0.88

0.9

0.86

0.78

0.68

0.57

0.5

0.45

0.41

Intensity shift

T
r
a
n
s
v
e
r
s
a
l
s
h
if
t

(a) vanilla

0.0 0.05 0.1 0.15 0.2 0.25

0
2

4
6

8
1
0

1
2

1
4

1
6

1
8

2
0

0.88

0.87

0.84

0.79

0.73

0.67

0.6

0.53

0.49

0.45

0.42

0.84

0.84

0.83

0.8

0.75

0.69

0.63

0.57

0.52

0.47

0.44

0.74

0.75

0.75

0.74

0.72

0.69

0.65

0.6

0.55

0.51

0.47

0.61

0.62

0.63

0.63

0.63

0.64

0.63

0.61

0.58

0.55

0.5

0.49

0.49

0.51

0.52

0.54

0.56

0.58

0.59

0.59

0.57

0.54

0.41

0.41

0.42

0.43

0.46

0.49

0.52

0.55

0.57

0.58

0.57

Intensity shift

(b) rob. tr.

0.0 0.05 0.1 0.15 0.2 0.25

0
2

4
6

8
1
0

1
2

1
4

1
6

1
8

2
0

0.91

0.9

0.86

0.81

0.76

0.69

0.63

0.59

0.55

0.52

0.5

0.89

0.9

0.88

0.85

0.8

0.74

0.69

0.64

0.6

0.57

0.55

0.82

0.86

0.87

0.85

0.81

0.76

0.72

0.68

0.64

0.62

0.6

0.73

0.78

0.81

0.81

0.79

0.76

0.73

0.69

0.67

0.65

0.63

0.63

0.68

0.71

0.73

0.73

0.72

0.7

0.68

0.66

0.65

0.64

0.55

0.58

0.61

0.63

0.64

0.65

0.64

0.63

0.63

0.62

0.62

Intensity shift

0.4

0.6

0.8

(c) r.f.s. + rob. int.

Fig. 4: Accuracy scores of experiments on combined artificial shifts

6 Conclusion

In this contribution, we proposed algorithm-based approaches to cope with hy-
perspectral sensor shifts. In contrast to prior data-level approaches, our robust
training methods do not pose any assumptions on the class distribution of the
measurements. Besides, we demonstrated that they are suited for a combination
of both transversal and intensity shifts.
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