
Learning with Boosting Decision Stumps for
Feature Selection in Evolving Data Streams

Daniel Nowak Assis

Independent Researcher

Abstract. Feature selection plays an important role in Machine Learning
pipelines, and many challenges emerge for feature selection when data
arrives continuously as a stream. In this paper, we extend the Adaptive
Boosting for Feature Selection (ABFS) algorithm by (i) using a different
Online Boosting strategy and (ii) changing the Boosting scaling factor of
instances weighting. Results show that our extended ABFS leveraged the
predictive performance of classifiers more than the standard ABFS in the
most used monolithic classifiers for stream mining.

1 Introduction

Data stream mining imposes different challenges for machine learning models.
Unlike the batch setting, where data is stored and available at any time, in the
stream setting, data arrives continuously, one instance at a time, and poten-
tially an infinite amount of instances can arrive. To deal with this scenario, a
predictive model must (i) incrementally update with instances, and (ii) process
an instance at least as fast as new ones are made available, otherwise data must
be discarded, or storing instances will collapse the system due to the lack of
memory [1]. Additionally, the assumption that the data is stationary does not
hold for the stream setting. Probability properties of data are susceptible to
change throughout the stream, a problem known as concept drift [3]. Concept
drifts can affect the predictive quality of a model, which must adapt in case of
detection.

Feature Selection is a well-known technique in the batch setting, that aims
to select a subset of features considered to be relevant, i.e., features that are
strongly correlated with the class [4]. In the stream-setting, the set of relevant
features can suffer changes throughout the stream, known as feature drift [6] and
a streaming feature selection algorithm must track this change to avoid classifiers
training with irrelevant features. To cope with this task in the stream-setting,
we propose extensions to the Adaptive Boosting for Feature Selection (ABFS)
[4] in the boosting training phase, making the instance weighting scaling more
sensitive on decision stumps correct and misclassifications.

We make available source codes and additional results on the paper’s support
website1.

2 Feature Selection with Boosting Decision Stumps

1https://sites.google.com/view/learning-boosting-ds

107

ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9.
Available from http://www.i6doc.com/en/.

Algorithm 1 ABFS + extensions

Input: ensemble size N , ensemble of boosting decision stumps h, instance I = (x⃗, y),
drift detector ψn, decision stump candidate dsc, the currently selected subset of
features F ′,

1: minPos← 1; maxPos← N
2: correct← false
3: λ← 1
4: idrift ← −1
5: sort h by

λsc
m

λsc
m+λsw

m
in ascending order

6: for n← 1 to N do
7: if correct then
8: pos← maxPos
9: maxPos← maxPos− 1

10: else
11: pos← minPos
12: minPos← minPos+ 1
13: end if
14: if hn/pos has correctly classified I then
15: λsc

m ← λsc
m + λ

16: λ← λ(ω
λsc
m+λsw

m
2·λsc

m
)

17: correct← true
18: Update ψn with 0
19: else
20: λsw

m ← λsw
m + λ

21: λ← λ(ω
λsc
m+λsw

m
2·λsw

m
)

22: correct← false
23: Update ψn with 1
24: end if
25: if ψn flagged a drift and idrift = −1 then
26: idrift = n/pos
27: break
28: end if
29: Remove from x⃗ the feature selected at hn/pos

30: end for
31: if idrift = −1 then
32: Train dsc with I and weight λ
33: if dsc has selected a feature fα then
34: h← h ∪ {dsc}
35: dsc ← newDecisionStump()
36: F ′ ← F ′ ∪ {fα}
37: end if
38: else
39: while N > idrift do
40: Remove from F ′ the feature selected in hN

41: h← h− {hN}
42: end while
43: end if

108

ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9.
Available from http://www.i6doc.com/en/.

Algorithm 1 presents the ABFS algorithm alongside the proposed changes
(text with a different color than black). The algorithm adapts the stream Boost-
ing version of [5] and uses stream decision stumps based on [2], being the decision
stumps only for feature selection. All line references are related to Algorithm 1.

The rationale of Online Boosting [5] for incremental training of an instance
consists of each learner having a weight for the training instance according to a
previous base-learner correct or misclassification (lines 14-24, Algorithm 1). The
algorithm tracks the sum of the weights of correct and misclassified instances of
each learner (λsc

m and λsw
m , respectively), and the instance weight λ (line 3) is

scaled based on half of the observations made by the learner (
λsc
m+λsw

m

2 , line 16
and 21), making λsc

m decrease and λsw
m increase, as desired [5].

For selecting features, the ABFS algorithm initially creates a single decision
stump candidate (dsc) that receives for training the instance with the accumu-
lated training weight λ (line 32). When the decision stump performs a split, the
feature used gets added to the subset of selected features, the decision stump
becomes a member of the boosting ensemble, and a new dsc gets instantiated
(lines 33-36). A split attempt occurs after the sum of training weights reaches a
user-given value [2]. Boosting is a sensitive method for misclassifications and as
the number of misclassifications by the decision stumps increases, a split attempt
will ensue faster. To track feature drifts, each decision stump in the boosting
ensemble has a drift detector (lines 18 and 23). In case of detection, the decision
stump and all of the following decision stumps that got a training weight from
it are deleted from the ensemble (lines 39-42).

The first extension to the ABFS proposed in this paper is the usage of a dif-
ferent Online Boosting strategy, namely the Boosting Online Learning Ensemble
(BOLE) [7]. This extension is highlighted in blue in Algorithm 1.

BOLE does not perform boosting linearly, i.e, a decision stump influences
the training weights of the decision stump that was created after him. The
decision stumps get sorted by the rate of the correct weights (line 5). The train
starts with the worst decision stump regarding correct weight. If the instance
is correctly classified, it is assumed that decision stumps with higher correct
prediction rates also have a great chance of correctly classifying the instance (an
error is unlikely), and the best decision stump not yet trained in the ensemble will
receive the weight for training (lines 7-9, Alg. 1). Otherwise, the worst classifier
not yet trained will receive weights for voting (lines 10-13, Alg. 1). It is worth
noting that only the final accumulated weight λ will influence the dsc, and BOLE
increases the λ more when many decision stumps get misclassifications since the
worst decision stumps influence each other until a decision stump makes a right
prediction.

The second extension to the ABFS is related to the scaling value of the λ
training weight. As mentioned, λ is scaled to half of the observations made by the
learner (lines 16 and 21). We propose scaling to higher values of the observations.
This extension is marked in red in Algorithm 1 as the parameter ω. Considering
the analysis made in [5], the scaling factors will be f c

m < ω
2 and fw

m > ω
2 , thus still

making λsc
m decrease and λsw

m increase, as desired. When ω > 1, the accumulated

109

ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9.
Available from http://www.i6doc.com/en/.

λ range values increase more with higher misclassifications, forcing dcs to do a
split attempt faster than the standard Online Boosting in misclassifications.

It is worth noting that a pitfall of Boosting methods can be noise data. This
is not the focus of this paper and we plan to analyze in future works Boosting
methods for feature selection that are more resilient to noise data.

3 Experiments and Results

In this paper, we focus on the multi-class classification problem. We assess pre-
dictive performance through accuracy results using a test-then-train evaluation
strategy, where every instance is used first for testing and then for training.

All the experiments were held in the MOA[1] framework. We evaluate mono-
lithic classifiers with a Drift Detection Method (DDM)[8] detector (with default
parameters) with and without feature selection. The monolithic classifiers evalu-
ated were Naive Bayes, kNN, Hoeffding Tree [2] and the Extremely Fast Decision
Tree (EFDT) algorithm [9], all with default parameters from MOA.

In this paper, we focus on real-world datasets because the best ABFS pa-
rameters evaluated in [4] differ for real-world and synthetic datasets. All of the
datasets configurations and their references are available on the paper’s website.

For all the versions of ABFS, we used the best-reported parameters [4]. The
minimum sum of training weight for a split attempt (known as Grace Period [2])
was set to 100, the minimum information gain so a split can happen was set to
0.05 and ADaptive WINdowing (ADWIN) [10] drift detector was used.

Oza-ABFS Oza-ABFS BOLE-ABFS BOLE-ABFS
Datasets Native ω = 1 ω = 3 ω = 1 ω = 2
Outdoor 59.55 66.075 63.45 62.075 63.05
Noaa 70.67 71.661 72.388 73.407 73.11
Elec 81.177 85.94 85.121 87.972 85.836

Nomao 94.441 95.285 95.497 95.398 95.085
Rialto 36.652 45.309 46.965 52.875 47.106

Covtype 88.026 86.624 89.638 88.428 89.058
Spam 74.314 90.894 91.002 90.326 90.691

Avg. Rank 4.857 3 2.143 2.286 2.714

Table 1: Naive Bayes accuracy.

Oza-ABFS Oza-ABFS BOLE-ABFS BOLE-ABFS
Datasets Native ω = 1 ω = 3 ω = 1 ω = 3
Outdoor 59.325 65.975 63.375 61.075 65.025
Noaa 73.638 72.152 71.953 72.912 72.923
Elec 85.414 86.187 85.582 87.983 86.262

Nomao 95.149 95.674 95.697 95.598 95.825
Rialto 40.255 47.836 48.387 54.094 48.501

Covtype 87.355 86.158 89.226 87.812 88.525
Spam 87.066 90.862 91.023 90.133 90.165

Avg. Rank 4.286 3.143 2.714 2.857 2

Table 2: Hoeffding Tree accuracy

110

ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9.
Available from http://www.i6doc.com/en/.

Oza-ABFS Oza-ABFS BOLE-ABFS BOLE-ABFS
Datasets Native ω = 1 ω = 3 ω = 1 ω = 3
Outdoor 59.45 63.85 60.95 61.4 64.15
Noaa 74.255 71.529 72.554 72.845 72.823
Elec 86.341 86.619 86.141 88.096 86.52

Nomao 95.784 95.758 95.86 95.607 95.871
Rialto 57.911 54.934 57.154 59.81 54.311

Covtype 86.555 86.177 89.106 87.842 88.501
Spam 89.06 91.216 91.592 89.876 90.401

Avg. Rank 3.429 3.429 2.857 2.714 2.571

Table 3: EFDT accuracy.

Oza-ABFS Oza-ABFS BOLE-ABFS BOLE-ABFS
Datasets Native ω = 1 ω = 4 ω = 1 ω = 2
Outdoor 65.225 49.525 55.7 61.4 53.675
Noaa 76.673 74.288 74.911 72.845 73.974
Elec 76.982 82.131 78.608 88.096 81.841

Nomao 96.405 95.741 96.135 95.607 96.031
Rialto 72.114 67.756 70.637 59.81 68.131

Covtype 87.876 82.492 83.512 87.842 84.608
Spam 84.288 88.438 88.3 89.876 87.784

Avg. Rank 2.143 3.571 2.857 3 3.429

Table 4: kNN accuracy.

Tables 1-4 present the accuracy of the monolithic classifiers and bold values
indicate the best results. We denote Oza-ABFS as the standard ABFS and
BOLE-ABFS as the extended ABFS with BOLE. We also present the algorithms
with standard training factor (ω = 1) and the best ω parameter per algorithm
(results available on the paper’s website).

For decision trees (Tables 2 and 3), all the ABFS extensions proposed lever-
aged the results more than the decision trees with standard ABFS, and BOLE-
ABFS with ω = 3 had the best results reported. For Naive Bayes, BOLE-ABFS
with and without the modifications in the scaling factor leveraged Naive Bayes
more than the Standard ABFS, but the best-reported results are with Oza-ABFS
with ω = 3. For kNN, the parameters reported in [4] did not leverage even the
native algorithm, probably because for each data set, the parameters can vary
more than the other algorithms. The algorithm that deleveraged kNN the less
was Oza-ABFS with ω = 4. Despite these facts, the processing time of kNN
decreased drastically with the ABFS algorithm.

We provide a Nemenyi-Friedman posthoc test in the data from Tables 1-4,
available on the paper’s website. With a critical difference of 2.304, the extended
ABFS with Naive Bayes showed to be statistically different compared to Native
Naive Bayes, while the standard ABFS is not. The other algorithms were not
statistically different from any ABFS version, even for Decision Trees that for
all extended versions of ABFS have better average ranking compared to Native
Decision Trees and with standard ABFS.

We also provide results regarding Processing Time in the paper’s website.

111

ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9.
Available from http://www.i6doc.com/en/.

Overall, BOLE-ABFS did not differ so much from Standard-ABFS in terms of
average processing time and percentage increase compared to the Native algo-
rithm. But the ω > 1 scaling factor makes ABFS more expensive, probably
because split attempts will occur more often and earlier, creating more Decision
Stumps.

4 Conclusions and future works

In this paper, we proposed 2 changes in the training phase of the ABFS algo-
rithm, namely, the integration of the BOLE algorithm to ABFS and different
scaling factor values of the correct and wrong weights of Boosting. These modi-
fications enhance the standard ABFS with a low overhead of processing time in
Naive Bayes and Decision Trees.

In future works we plan to deeply analyze the kNN algorithm with feature
selection algorithms, seeking to improve kNN results and make it the most ef-
ficient in processing time possible, since kNN complexity can be unfeasible in
high-speed data streams that contain high dimensionality. We also plan to ana-
lyze Boosting methods for feature selection that are resilient to noise data.

References

[1] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, MOA: Massive online analysis. The
Journal of Machine Learning Research, vol. 11, pp. 1601- 1604, 2010

[2] Pedro Domingos and Geoff Hulten. 2000. Mining high-speed data streams. In Proceedings
of the sixth ACM SIGKDD international conference on Knowledge discovery and data
mining (KDD ’00). Association for Computing Machinery, New York, NY, USA, 71 80.

[3] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama and G. Zhang, ”Learning under Concept Drift:
A Review,” in IEEE Transactions on Knowledge and Data Engineering, vol. 31, no. 12,
pp. 2346-2363, 1 Dec. 2019, doi: 10.1109/TKDE.2018.2876857.

[4] Jean Paul Barddal, Fabŕıcio Enembreck, Heitor Murilo Gomes, Albert Bifet, Bernhard
Pfahringer, Boosting decision stumps for dynamic feature selection on data streams, In-
formation Systems, Volume 83, 2019, Pages 13-29.

[5] Nikunj C. Oza, Stuart J. Russell. Online Bagging and Boosting. Proceedings of the Eighth
International Workshop on Artificial Intelligence and Statistics, PMLR R3:229-236, 2001.

[6] Jean Paul Barddal, Heitor Murilo Gomes, Fabŕıcio Enembreck, Bernhard Pfahringer, A
survey on feature drift adaptation: Definition, benchmark, challenges and future direc-
tions, Journal of Systems and Software, Volume 127, 2017, Pages 278-294.

[7] R. S. M. d. Barros, S. Garrido T. de Carvalho Santos and P. M. Goncalves Júnior,
”A Boosting-like Online Learning Ensemble,” 2016 International Joint Conference
on Neural Networks (IJCNN), Vancouver, BC, Canada, 2016, pp. 1871-1878, doi:
10.1109/IJCNN.2016.7727427.

[8] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, Learning with drift detection. in
Advances in Artificial Intelligence SBIA 2004, ser. LNCS. Springer, 2004, vol. 3171, pp.
286-295.

[9] C. Manapragada, G. I. Webb, and M. Salehi. 2018. Extremely Fast Decision Tree. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD 18). Association for Computing Machinery, New York, NY, USA.

[10] A. Bifet, R. Gavaldà, Adaptive Learning from Evolving Data Streams, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2009, pp. 249-260. doi:10.1007/978-3-642-03915-7 22.

112

ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9.
Available from http://www.i6doc.com/en/.

	AllPapers
	Wednesday
	ES2023-16-2

