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Abstract. Evaluating the adversarial robustness of machine-learning
models using gradient-based attacks is challenging. In this work, we show
that hyperparameter optimization can improve fast minimum-norm at-
tacks by automating the selection of the loss function, the optimizer,
and the step-size scheduler, along with the corresponding hyperparam-
eters. Our extensive evaluation involving several robust models demon-
strates the improved efficacy of fast minimum-norm attacks when hyped
up with hyperparameter optimization. We release our open-source code
at https://github.com/pralab/HO-FMN.

1 Introduction

Machine learning (ML) models are susceptible to adversarial attacks [1, 13],
i.e., input samples carefully perturbed to mislead the model. To evaluate ad-
versarial robustness, many different gradient-based attacks have been proposed,
whose performance is significantly affected by the choice of the loss function to
optimize, the optimization algorithm, and the step-size scheduler. From a prac-
tical perspective, attacks tend to be run with a “default” configuration and set
of hyperparameters that are deemed to fit most of the cases. Yet, the attack
effectiveness is highly case-dependent, implying that the choice of the configura-
tion needs to be carefully tailored to the model rather than a de-facto standard
choice. In AutoAttack (AA) [4], the authors try to overcome this limitation
by proposing an ensemble of parameter-free attacks, each including an internal
auto-tuning process for each relevant hyperparameter. With Adaptive AutoAt-
tack (AAA) [16], the approach is configured to run the parameter-free AA to look
for a fast and good evaluation or alternatively come forward with an extensive
search on a pool of attacks.

In this paper, we aim to use a smart and effective search for the best con-
figuration that adapts the attack to the model. Hence, we propose a systematic
framework for configuring the state-of-the-art, fast minimum-norm (FMN) at-
tacks properly instead of running extensive searches on multiple attacks. To
this end, we develop our framework by rethinking the choice of the loss function,
optimizer, and step-size scheduler as attack hyperparameters and then using a
unified hyperparameter optimization procedure.

*These authors contributed equally to this work
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Algorithm 1: Fast Minimum-norm (FMN) Attack

Input : x, the input sample; y, the target (true) class label; α0, the
initial δ-step size; K, the total number of iterations; L, the
loss of the attack; h, the step size scheduler; u, the update
function for the gradient.

Output: The minimum-norm adversarial example x⋆.
1 x0 ← x, ϵ0 = 0, δ0 ← 0, δ⋆ ←∞, γ0 = 0.05 ▷ initialization

2 for k = 1, . . . ,K do
3 g ← ∇δL(x+ δk−1, y,θ) ▷ loss gradient

4 γk ← hγ(γ0, k,K) ▷ ϵ-step size decay

5 ϵk = uϵ(ϵk−1, γk, ∥δ∥p) ▷ ϵ-step
6 αk ← h(α0, k,K) ▷ scheduler step

7 δk ← u(δk−1, g/∥g∥2, αk) ▷ optimizer step

8 δk ← Π(x0, δk) ▷ projection onto the feasible domain

9 return x⋆ ← x0 + best(δ0, ...δK) ▷ return best solution

2 FMN Attacks with Hyperparameter Optimization

We introduce here a modified FMN attack algorithm, referred to as HO-FMN,
in which the loss function, the optimizer, and the step-size scheduler, along with
their hyperparameters, are all exposed to be optimized. We then provide details
on the hyperparameter optimizer considered in this work.
FMN Attacks. FMN [10] aims to find minimum-norm adversarial perturba-
tions. The objective of the attack is to find, for a model with decision function
f(·), the smallest perturbation δ to add to an input sample x with true label
y so that f(x + δ) ̸= y. To this end, it takes a PGD-step to optimize the
perturbation by minimizing a loss function (i.e., the δ-step) within a given per-
turbation budget ϵ, then it adjusts ϵ to iteratively reduce the perturbation norm
(i.e., the ϵ-step). In this work, we improve the δ-step in the FMN algorithm
while leaving the ϵ-step unchanged (as the latter only optimizes a scalar value).
In this regard, we consider different step-size schedulers (other than the cosine
annealing [8] used in the baseline FMN) and more sophisticated optimizers (us-
ing different gradient update strategies other than SGD). The attack loss on
which we optimize (logit loss [2]) is also put into question as we look for better
candidates.
HO-FMN.We report in Algorithm 1 a revisited formulation of the FMN attack,
in which the role of the loss function L, optimizer u, and scheduler h are better
isolated. This novel formulation of the FMN attack enables us to generalize it
by allowing a different selection of each component, treating each of them as a
different hyperparameter or attack configuration. While the overall algorithm
remains conceptually unchanged, we modify the attack loss L, the optimizer u,
and the step-size scheduler h used in the δ-step. These are the elements that
change from the original attack implementation and are made optimizable in

128

ESANN 2023 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 4-6 October 2023, i6doc.com publ., ISBN 978-2-87587-088-9. 
Available from http://www.i6doc.com/en/.



our work. In practice, given a model, we exploit hyperparameter optimization
to find the best combination of loss, optimizer, and scheduler along with their
hyperparameter values (e.g., the initial step size, etc.).

3 Experiments

We describe below the experimental setup used in our work and then the results.
Hyperparameter Tuning. As introduced in Sect. 2, we aim to improve FMN
by optimizing the choice of: (i) the loss function, selecting between the logit
loss (LL) and the cross-entropy loss (CE); (ii) the optimizer, selecting between
SGD (with and without Nesterov acceleration) and Adam (with and without
AmsGrad); and (iii) the step-size scheduler, selecting among Cosine Annealing
(CALR), Cosine Annealing with Warm Restarts (CAWR), MultiStep (MSLR),
and Reduced On Plateau (RLROP). We define for optimizers and step-size sched-
ulers a search space made by the possible hyperparameter values and sampling
options. In particular, for each optimizer, we tune the initial step size, the
momentum, and weight decay; for each scheduler, we tune the most important
parameters such as the milestones in MSLR, the iteration parameters in CALR
and CAWR and the factor in RLROP. The search space is then parsed in the
context of the FMN hyperparameter optimization. The algorithms responsible
for finding the best optimizer/scheduler configuration are the CFO search algo-
rithm [15] and the ASHA scheduler [6]. We leverage the Ray Tune framework*

for handling the hyperparameter optimization [7].
Dataset. We take a subset of 100 samples from the CIFAR10 test set for
running our hyperparameter optimization, where for every model we analyzed
each and every loss/optimizer/scheduler configuration. Upon finding a specific
set of best hyperparameters, we use a separate set of 1000 samples (also taken
from the CIFAR10 test set) to run the FMN attack on the models and discuss
the results.
Perturbation Model. We restrict our analysis here to the ℓ∞-norm attacks,
as it is one of the most problematic cases for the baseline FMN algorithm.
Models. We consider 9 state-of-the art robust models from RobustBench [3]:
M0, the WideResNet-70-16 in [14]; M1, the WideResNet-28-1 in [14]; M2, the
WideResNet-70-16 in [5]; M3, the WideResNet-106-16 in [11]; M4, the WideResNet-
28-10 in [5]; M5, the WideResNet-70-16 in [9]; M6, the ResNet-152 in [12]; M7,
the WideResNet-28-10 in [9]; and M8, the ResNet-18 in [5].
Performance Metrics. For HO-FMN, we select the configuration that achieves
the smallest median ||δ||∞, following [10]. We then use it to evaluate the robust
accuracy (RA) of the models. For minimum-norm attacks, RA can be evalu-
ated over the entire range of perturbation sizes by imposing a threshold on the
distances found, i.e., we can compute the full robustness-perturbation curve.
Experimental Results. We evaluate the candidate configurations by running
HO-FMN on the 9 selected models. We show the resulting robust accuracy val-
ues at ϵ = 8/255 in Table 1. We highlight how the LL loss consistently finds

*https://docs.ray.io/en/latest/tune/index.html
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better perturbations than CE and that, in the case of the most unfortunate con-
figuration, the models’ robustness would have been considerably overestimated.

Table 1: Results for HO-FMN, compared with reference values for AA. We
highlight in yellow HO-FMN (SGD) and in blue HO-FMN (Adam).

Optim. Sched. Loss M0 M1 M2 M3 M4 M5 M6 M7 M8 Mean

AA 0.71 0.67 0.66 0.65 0.63 0.63 0.63 0.61 0.59 0.64

SGD CALR LL 0.76 0.74 0.70 0.66 0.66 0.68 0.66 0.58 0.62 0.67

Adam RLROP LL 0.76 0.72 0.68 0.64 0.58 0.62 0.56 0.56 0.60 0.64

Adam CALR LL 0.78 0.74 0.68 0.64 0.62 0.66 0.64 0.58 0.62 0.66
Adam MSLR LL 0.78 0.74 0.70 0.66 0.62 0.66 0.64 0.58 0.62 0.67
SGD RLROP LL 0.76 0.74 0.70 0.64 0.64 0.68 0.64 0.58 0.62 0.67
Adam CAWR LL 0.78 0.74 0.72 0.66 0.64 0.66 0.66 0.58 0.62 0.67
SGD CALR LL 0.78 0.74 0.70 0.66 0.64 0.68 0.66 0.58 0.62 0.67
SGD CAWR LL 0.78 0.74 0.70 0.66 0.66 0.68 0.66 0.58 0.62 0.68
SGD MSLR LL 0.78 0.74 0.74 0.66 0.66 0.68 0.66 0.58 0.62 0.68

Adam MSLR CE 0.90 0.90 0.86 0.76 0.76 0.86 0.70 0.86 0.88 0.83
SGD MSLR CE 0.96 0.94 0.88 0.84 0.82 0.92 0.80 0.82 0.80 0.86
SGD CALR CE 1.00 0.96 0.90 0.88 0.86 0.94 0.86 0.88 0.84 0.90
SGD RLROP CE 1.00 0.96 0.90 0.88 0.86 0.94 0.86 0.90 0.84 0.90
SGD CAWR CE 1.00 0.96 0.92 0.90 0.86 0.94 0.88 0.90 0.88 0.92
Adam CALR CE 1.00 1.00 0.94 0.96 0.90 0.96 0.92 0.94 0.94 0.95
Adam CAWR CE 1.00 1.00 0.96 0.96 0.94 0.96 0.92 0.94 0.94 0.96
Adam RLROP CE 1.00 1.00 0.96 0.96 0.92 0.98 0.92 0.94 0.94 0.96

From the results in Table 1 we select the configurations Adam+RLROP+LL
and SGD+CALR+LL, and run the evaluation on our test set of 1000 CIFAR10
samples with the discovered best hyperparameters.*

We report the hyperparameters found with the first setting, which we name
HO-FMN (Adam), listed for each model as (learning rate, weight decay,
factor, amsgrad), M0: (5,534 0,025 0,327, False); M1: (8,801 0,043 0,366,
False); M2: (4,073 0,019 0,286, False); M3: (9,616 0,024 0,301, False); M4:
(7,078 0,019 0,260, False); M5: (7,078 0,019 0,260, False); M6: (4,194 0,020
0,235, False); M7: (9,339 0,023 0,352, True); M8: (4,073 0,019 0,286, False). We
leave the other parameters of Adam+RLROP fixed: eps=10−8, betas=(0.9,
0.999), patience=5, threshold=10−5.

We list the hyperparameters for the second configuration, HO-FMN (SGD),
as (learning rate, weight decay, momentum, dampening), M0: (4,453 0,917
0,010 0,085); M1: (1,523 0,880 0,041 0,037); M2: (1,222 0,916 0,010 0,089); M3:
(3,837 0,924 0,001 0,114); M4: (1,013 0,926 0,014 0,122); M5: (3,141 0,936 0,010
0,136); M6: (1,222 0,943 0,010 0,058); M7: (2,562 0,911 0,010 0,071); M8: (2,124
0,922 0,010 0,104), and we keep fixed T max=100, eta min=0, last epoch=-1.

We show the resulting robust accuracy for increasing perturbation sizes in
Figure 1, compared with the value reported in RobustBench (computed only
for ||δ|| = 8/255). We remark that the values found are comparable with AA.
However, our attack is able to compute the full robustness-perturbation curve

*https://pytorch.org/docs/stable/optim.html
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Fig. 1: Robust accuracy computed on M0-M8 with HO-FMN in the two versions
Adam and SGD, and with AA at the fixed value of ϵ=8/255.

with one single optimization. Achieving the same result with AA is only possible
by running AA multiple times with a range of different perturbation sizes, which
would require a significant increase in computational complexity.

4 Conclusions and Future Work

In this work, we investigated the use of hyperparameter optimization to improve
the performance of the FMN attack algorithm. Our findings highlight that hy-
perparameter optimization can improve FMN to reach competitive performance
with AutoAttack while providing a more thorough adversarial robustness eval-
uation (i.e., computing the whole robustness-perturbation curve).

We argue that the same approach can be combined with other attacks, dif-
ferent threat models, or more configurations. In future work, we will extend our
analysis beyond the ℓ∞-norm FMN attack, considering ℓ0, ℓ1, and ℓ2 norms.

We remark that adding more hyperparameters to tune would make the search
space bigger, resulting in a longer optimization time. To this end, we will also
try to develop sound heuristics to make hyperparameter tuning faster, designing
faster exploration phases in the initial steps of the FMN optimization process.
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