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Abstract. The rapid growth of electronic waste (e-waste) has led to
an urgent need for efficient recycling processes to recover valuable ma-
terials and reduce environmental impact. Waste Printed Circuit Boards
(WPCBs) constitute significant e-waste and contain valuable components
and precious metals. Computer vision systems can automate the classifi-
cation, disassembly, and recycling of WPCBs. However, obtaining large
annotated datasets for machine learning in this domain is costly and of-
ten unavailable. This paper investigates using few-shot and supervised
contrastive learning in electronic component detection. We propose a
model incorporating contrastive learning components for detecting elec-
tronic components in scenarios with limited training data or annotated
labels. Our experimental results show that, in limited-data scenarios, con-
trastive learning outperforms the original versions of Faster R-CNN object
detector. This study contributes to developing efficient recycling solutions
for e-waste management and resource recovery.

1 Introduction

Waste of Electrical and Electronic Equipment (WEEE) is the fastest-growing
waste class [1, 2], due to factors such as reduced device lifetimes and increased
consumption of these devices. It is estimated that about 30% of WEEE is
composed of Printed Circuit Boards (PCBs) [1], and PCBs are the largest sources
of valuable elements (precious metals), in addition to the possibility of reusing
some electronic components [3]. However, the composition of PCBs is highly
varied, making the recycling process quite complex [4].

Commonly, the PCB recycling process involves three steps: removal of elec-
tronic components, mechanical processing (e.g., shredding), and some chemical
leaching process. Preprocessing steps, such as separating by PCB type, dis-
assembling components, and choosing the appropriate recycling process, can
increase efficiency and reduce the cost of the recycling process [4]. Computer
vision systems can perform WPCB evaluation to guide automatic disassembly
and recycling, classification, and separation of WEEE [5]. However, large enough
labeled datasets for the PCB domain are expensive and unavailable [6].
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The central hypothesis of this work is defined as follows: a computer vision
model with contrastive learning components can be used to detect electronic
components in scenarios with limited available training data. So, in this work we
evaluate a contrastive learning component added to the Faster R-CNN model for
electronic component detection. The results indicate that contrastive learning
yields better results in scenarios with limited data than the original versions of
classifiers and detectors.

2 Releated works

Contrastive learning proposes a cost function that takes into account that indi-
viduals of the same class should be represented as similarly as possible, while
individuals from different classes should be represented as divergently as possi-
ble, leading to larger margins of separation between classes [7].

Supervised contrastive learning, as described in SupCon [8], can be applied to
supervised scenarios. In unsupervised learning, two different images belonging to
the same class can be presented to the model as if they were divergent. However,
in a fully supervised scenario, all image labels are known, and therefore this does
not happen. Consequently, the cost function is defined as follows:

Lsup =
∑

i∈I

L
sup
i =

∑

i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp(zi · zj(i)/τ)∑

a∈A(i)

exp(zi · za/τ)
(1)

where P (i) ≡ p ∈ A(i)|yp = yi , meaning that P (i) is a set of samples belonging
to the same class. The SupCon cost function generates similar representation
for individuals of the same class and distinct representation (lower similarity) for
individuals of different classes. The use of SupCon outperforms the ResNet-50
and ResNet-200 models when trained with cross-entropy. Additionally, SupCon
is more robust to ImageNet label corruption, and the higher the level of noise
in the labels, the better the performance of SupCon compared to training with
cross-entropy on the same architecture [8].

Recently, unsupervised or self-supervised training methods have been em-
ployed for object detection [9]. In this context, a similar proposal to this work is
FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding [10]. It is
a fully supervised proposal, based on Faster R-CNN, that suggests adding a con-
trastive learning-based function in the model training. The first stage of FSCE
is training the standard Faster R-CNN, as previously discussed, with a large
database. This Faster R-CNN, called the base model, is fine-tuned by adding
new classes containing a few examples in the database. In this final step, the
backbone parameters are frozen, and a contrastive learning component (LCPE)
is added to the Faster R-CNN loss, similar to the Equation 1.
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3 Contrastive Faster-RCNN for Electronic Component De-

tection

3.1 FICS PCB Dataset

The FICS-PCB dataset was consists of 9,912 images of 31 PCBs captured using
a DSLR camera and a digital microscope [11]. In this work, we are using only
the DSLR camera images. It includes annotations for six types of components:
capacitors, resistors, inductors, transistors, diodes, and integrated circuits. For
our study, we used the same preprocessing and new classes split proposed in [12]:
ceramic capacitor (3.140 samples), tantalum capacitor (54 samples), electrolytic
capacitor (44 samples), resistor (3.006 samples), integrated circuit (653 samples),
LED (67 samples), diode (33 samples), and inductor (133 samples). The class
imbalance is a characteristic of the PCB’s electronic component composition.
Usually, an average PCB has more ceramic capacitors and resistors than other
components. Figure 1 shows an image sample from the dataset.

Fig. 1: Example image from the FICS-PCB dataset [11] with the corresponding
annotations.

3.2 Contrastive Faster-RCNN

To evaluate the effectiveness of contrastive learning in electronic component
detection, we modified the cost function of the Faster R-CNN by adding a con-
trastive learning component. The implementation was based on the Torchvision
Faster R-CNN implementation. The modified cost function is as follows:

L(pi, ti, zi) =
1

Ncls

∑

i

Lcls(pi, p
∗

i )+
1

Nreg

∑

i

p∗iLreg(ti, t
∗

i )+LCPE(zi, IOU(ti, t
∗

i )).

(2)
where Lcls is the standard classification component, Lreg is the standard regres-
sion (bounding boxes) component and LCPE is the contrastive proposal encond-
ing element. In the LCPE function, zi represents the feature vector of region
i, extracted by the ROI Pooling layer. The LCPE function is the supervised
contrastive learning component. The only remaining element to define is the
IOU weighting function, which we set as f(ui) = 1 if ui > Nt, and f(ui) = 0
otherwise. To reduce the size of the feature vector zi, we also used a dense
layer similar to the one used in CNN for classification. However, this reduction
only calculates the LCPE term in the cost function. It does not require any
architectural changes to the original model. Therefore, the architecture of the
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Contrastive Faster R-CNN model remains unchanged compared to the original
model.

The Contrastive Faster R-CNN differs from the FSCE [10] because instead
of using the TFA (two-stage fine-tuning approach) method, the model is trained
in a single stage. In a typical few-shot object detection problem, there is a
sufficiently large dataset for initial training, followed by the presentation of new
classes with few examples. Therefore, all classes were presented simultaneously
to the model in the formulation adopted for this problem.

To evaluate the Contrastive Faster R-CNN, we defined two scenarios: the first
one, all classes are present and 24 PCBs were used for training and validation,
and 7 PCBs were used for testing. Since the preprocessing steps include a sliding
window image crop and data augmentation, each PCB image outputs several
images - according to the PCB size. In the second one, only the three most
numerous classes and 4 PCBs were used for training and validation. The test
set is the same as the first scenario. We used the default parameters for Faster-
RCNN Torchvision implementations, but specifically for the Contrastive Faster
R-CNN, the number of neurons in the dense layer for feature vector reduction
is 256, the Weight of LCPE is 1.0, the temperature of contrastive loss is 0.2 and
IOU threshold for LCPE : 0.5.

4 Results

Figure 2 presents the results of Faster R-CNN and Contrastive Faster R-CNN
on the test set. The model using contrastive learning has a 0.7% higher mAP
than the standard version, with the largest difference in the diode class. For
the integrated circuit class, the Contrastive Faster R-CNN has a higher average
precision (approximately 7% higher), while for the electrolytic capacitor class,
the original model has a higher average precision (approximately 12% higher).
For the other classes, the average precision values are close between the two
models.

Fig. 2: Average Precision and mAP Results of Faster R-CNN and Contrastive
Faster R-CNN on the FICS-PCB REMAP database.

In Figure 3 can be noted that the accuracy of the Faster R-CNN detec-
tions (49.14%) is higher than that of the contrastive learning version (47.13%).
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Regarding the class with the largest difference between the models, the Faster R-
CNN correctly detects 31 diodes, while the Contrastive Faster R-CNN detects
37 diodes correctly. Removing the diode class, the Faster R-CNN and Con-
trastive Faster R-CNN models would have 80.9% and 80.0% mAP, respectively.
In conclusion, it is not possible to establish significant differences between the
models.

Fig. 3: Detection Evaluation Results of Faster R-CNN and Contrastive Faster
R-CNN on the FICS-PCB REMAP database.

In the second scenario (only 4 PCBs and the three most numerous classes),
the obtained results are shown in Figure 4, with a more significant difference
between the models - 33.7% mAP for Faster R-CNN and 44.99% mAP for the
version with the contrastive learning component. In all classes, the Contrastive
Faster R-CNN had higher average precision.

Fig. 4: Average Precision and mAP Results of Faster R-CNN and Contrastive
Faster R-CNN on the FICS-PCB REMAP database reduced to 4 PCBs.

5 Conclusion

This paper evaluates using a contrastive learning component in the Faster R-
CNN to detect electronic components in printed circuit boards. The contrastive
Faster R-CNN performs better than the standard model when using a few-shot
problem approach, resulting in an approximately 11% higher mAP. However,
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there is a difficulty in training the model, which requires batches with at least
two objects to calculate the contrastive loss encoding (LCPE) component. Al-
though contrastive learning is beneficial in scenarios with little training data,
more is needed to outperform other models when trained with an extensive
dataset. If training with only a few data is possible, the difficulty of a Faster
R-CNN-based object detector in this scenario can be minimized using supervised
contrastive learning. The main challenge in the target application, which is de-
tecting electronic components in PCBs for recycling, is the need for labeled data.
Partial labeling of the dataset or using a semi-supervised learning approach can
help address this issue.
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